Abstract

An ultra-broadband near-perfect absorber based on one-dimensional meta-surface utilizing refractory materials is proposed and demonstrated numerically. High absorptivity from UV to the near-infrared region (300-1200 nm) is attained for both transverse electric (TE) and transverse magnetic (TM) polarizations. For TE polarization, an average absorption of 96.0% with peak absorption up to 99.4% is attained. Simultaneously, an average absorption of 91.0% with peak absorption about 99.8% is achieved for TM polarization. Moreover, the high absorptivity can be maintained with incident angles up to 45°. The excellent performances are attributed to the trapping effect of the multiple resonance modes supported by the multi-layered structure. The ultra-broadband near-perfect absorber presented in this paper will provide a new method for realizing ultra-broadband polarization-independent absorption with a one-dimensional meta-surface, and has potential application prospects in color-printing, solar-energy harvesting, and other fields.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks

Yuyin Li, Zhengqi Liu, Houjiao Zhang, Peng Tang, Biao Wu, and Guiqiang Liu
Opt. Express 27(8) 11809-11818 (2019)

Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
    [Crossref]
  2. Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
    [Crossref]
  3. Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [Crossref]
  4. X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
    [Crossref]
  5. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref]
  6. Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
    [Crossref]
  7. Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
    [Crossref]
  8. C. H. Lin, R. L. Chen, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
    [Crossref]
  9. T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
    [Crossref]
  10. L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
    [Crossref]
  11. S. Han and B. J. Lee, “Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum,” Opt. Express 24(2), A202–A214 (2016).
    [Crossref]
  12. J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
    [Crossref]
  13. C. H. Lin, R. L. Chen, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
    [Crossref]
  14. S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
    [Crossref]
  15. J. N. Munday and A. Harry, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [Crossref]
  16. S. Shen, J. Tang, J. Yu, L. Zhou, and Y. Zhou, “Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal,” Opt. Express 27(18), 24989–24999 (2019).
    [Crossref]
  17. P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
    [Crossref]
  18. B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
    [Crossref]
  19. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
    [Crossref]
  20. M. Batuhan and C. Sabah, “multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting,” Plasmonics 11(5), 1313–1321 (2016).
    [Crossref]
  21. S. Wu, Y. Ye, and L. Chen, “A broadband omnidirectional absorber incorporating plasmonic metasurfaces,” J. Mater. Chem. C 6(43), 11593–11597 (2018).
    [Crossref]
  22. M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
    [Crossref]
  23. C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
    [Crossref]
  24. B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
    [Crossref]
  25. L. K. Tae, C. G. Ji, and L. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
    [Crossref]
  26. P. Zhu and J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
    [Crossref]
  27. L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
    [Crossref]
  28. Y. Li, Z. Liu, H. Zhang, P. Tang, B. Wu, and G. Liu, “Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks,” Opt. Express 27(8), 11809–11818 (2019).
    [Crossref]
  29. Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
    [Crossref]
  30. G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
    [Crossref]
  31. Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
    [Crossref]
  32. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Elsevier, 1985).
  33. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  34. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  35. Y. Liang, W. Peng, R. Hu, and L. Xie, “Extraordinary optical properties in the subwavelength metallodielectric free-standing grating,” Opt. Express 22(16), 19484–19494 (2014).
    [Crossref]

2019 (5)

S. Shen, J. Tang, J. Yu, L. Zhou, and Y. Zhou, “Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal,” Opt. Express 27(18), 24989–24999 (2019).
[Crossref]

Y. Li, Z. Liu, H. Zhang, P. Tang, B. Wu, and G. Liu, “Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks,” Opt. Express 27(8), 11809–11818 (2019).
[Crossref]

Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
[Crossref]

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

2018 (2)

S. Wu, Y. Ye, and L. Chen, “A broadband omnidirectional absorber incorporating plasmonic metasurfaces,” J. Mater. Chem. C 6(43), 11593–11597 (2018).
[Crossref]

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
[Crossref]

2017 (3)

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

2016 (6)

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
[Crossref]

S. Han and B. J. Lee, “Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum,” Opt. Express 24(2), A202–A214 (2016).
[Crossref]

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref]

M. Batuhan and C. Sabah, “multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting,” Plasmonics 11(5), 1313–1321 (2016).
[Crossref]

L. K. Tae, C. G. Ji, and L. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

2015 (5)

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref]

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

2014 (2)

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Y. Liang, W. Peng, R. Hu, and L. Xie, “Extraordinary optical properties in the subwavelength metallodielectric free-standing grating,” Opt. Express 22(16), 19484–19494 (2014).
[Crossref]

2013 (1)

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

2012 (2)

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref]

P. Zhu and J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

2011 (4)

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
[Crossref]

C. H. Lin, R. L. Chen, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
[Crossref]

J. N. Munday and A. Harry, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref]

C. H. Lin, R. L. Chen, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
[Crossref]

2010 (2)

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

1995 (2)

Abbas, M. N.

Batuhan, M.

M. Batuhan and C. Sabah, “multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting,” Plasmonics 11(5), 1313–1321 (2016).
[Crossref]

Boriskina, S. V.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Cadusch, J. J.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref]

Cai, B.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref]

Cai, Y.

Cai, Z.

Cao, H.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Chang, Y. C.

Chen, G.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Chen, H.

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
[Crossref]

Chen, J.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Chen, L.

S. Wu, Y. Ye, and L. Chen, “A broadband omnidirectional absorber incorporating plasmonic metasurfaces,” J. Mater. Chem. C 6(43), 11593–11597 (2018).
[Crossref]

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref]

Chen, Q.

Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
[Crossref]

Chen, R. L.

Cheng, C. W.

Chiu, C. W.

Cui, Y.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Davis, T. J.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref]

Dligatch, S.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref]

Dong, X.

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
[Crossref]

Fang, B.

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Feng, Y.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Fu, G.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Gao, L.

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
[Crossref]

Gaylord, T. K.

Ghasemi, H.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Ghosh, G.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Elsevier, 1985).

Gomez, D. E.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref]

Grann, E. B.

Guo, J.

P. Zhu and J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Guo, L.

L. K. Tae, C. G. Ji, and L. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Han, S.

Hao, Y.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Harry, A.

J. N. Munday and A. Harry, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref]

He, S.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

He, X.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Hu, R.

Huang, C.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Huang, H.

Huang, L.

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
[Crossref]

Ji, C. G.

L. K. Tae, C. G. Ji, and L. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Ji, T.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Jia, P.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Jia, W.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Jiang, J.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Jiang, T.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Jin, Y.

Lai, K. T.

Lee, B. J.

Lei, L.

Li, L.

Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
[Crossref]

Li, S.

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
[Crossref]

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Li, Y.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Y. Li, Z. Liu, H. Zhang, P. Tang, B. Wu, and G. Liu, “Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks,” Opt. Express 27(8), 11809–11818 (2019).
[Crossref]

Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
[Crossref]

Liang, Y.

Lin, C. H.

Lin, H. Y.

Lin, T.

Liu, G.

Y. Li, Z. Liu, H. Zhang, P. Tang, B. Wu, and G. Liu, “Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks,” Opt. Express 27(8), 11809–11818 (2019).
[Crossref]

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Liu, L.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Liu, M.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Liu, Q. H.

Liu, X.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Liu, Y.

Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
[Crossref]

Liu, Z.

Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
[Crossref]

Y. Li, Z. Liu, H. Zhang, P. Tang, B. Wu, and G. Liu, “Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks,” Opt. Express 27(8), 11809–11818 (2019).
[Crossref]

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Luo, M.

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

Ma, Q.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Moharam, M. G.

Mulvaney, P.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref]

Munday, J. N.

J. N. Munday and A. Harry, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref]

Ng, C.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref]

Palik, E.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Elsevier, 1985).

Pang, C.

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Peng, L.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Peng, W.

Pommet, D. A.

Qian, Q. Y.

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Roberts, A.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref]

Rufangura, P.

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

Sabah, C.

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

M. Batuhan and C. Sabah, “multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting,” Plasmonics 11(5), 1313–1321 (2016).
[Crossref]

Shen, S.

S. Shen, J. Tang, J. Yu, L. Zhou, and Y. Zhou, “Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal,” Opt. Express 27(18), 24989–24999 (2019).
[Crossref]

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
[Crossref]

Shen, W. D.

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Shi, C.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref]

Shi, L.

Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
[Crossref]

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Shih, M. H.

Sun, T.

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Tae, L. K.

L. K. Tae, C. G. Ji, and L. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Tang, J.

Tang, P.

Y. Li, Z. Liu, H. Zhang, P. Tang, B. Wu, and G. Liu, “Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks,” Opt. Express 27(8), 11809–11818 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Tang, Q.

Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
[Crossref]

Tao, K.

Wang, C. H.

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Wang, Y.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Wang, Z.

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
[Crossref]

Wu, B.

Wu, F.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Wu, J.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Wu, S.

S. Wu, Y. Ye, and L. Chen, “A broadband omnidirectional absorber incorporating plasmonic metasurfaces,” J. Mater. Chem. C 6(43), 11593–11597 (2018).
[Crossref]

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

Wu, X.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Xie, L.

Xu, P.

Yan, S.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Yan, Y.

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Yang, C. Y.

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Yang, F.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Ye, L.

Ye, Y.

S. Wu, Y. Ye, and L. Chen, “A broadband omnidirectional absorber incorporating plasmonic metasurfaces,” J. Mater. Chem. C 6(43), 11593–11597 (2018).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

Yi, Z.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Yu, J.

S. Shen, J. Tang, J. Yu, L. Zhou, and Y. Zhou, “Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal,” Opt. Express 27(18), 24989–24999 (2019).
[Crossref]

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Yuan, W. J.

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zang, X.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref]

Zhang, H.

Zhang, Q.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Zhang, X.

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zhang, Y. G.

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zhao, J.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Zhou, C.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Zhou, J.

Zhou, L.

S. Shen, J. Tang, J. Yu, L. Zhou, and Y. Zhou, “Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal,” Opt. Express 27(18), 24989–24999 (2019).
[Crossref]

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
[Crossref]

Zhou, Y.

S. Shen, J. Tang, J. Yu, L. Zhou, and Y. Zhou, “Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal,” Opt. Express 27(18), 24989–24999 (2019).
[Crossref]

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
[Crossref]

Zhu, B.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Zhu, F.

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
[Crossref]

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Zhu, J.

Zhu, P.

P. Zhu and J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Zhu, Y.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref]

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Zhuang, S.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref]

ACS Nano (1)

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref]

Adv. Opt. Mater. (1)

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Appl. Phys. Express (2)

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, and L. Li, “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,” Appl. Phys. Express 12(7), 072002 (2019).
[Crossref]

Appl. Phys. Lett. (4)

B. Fang, C. Y. Yang, C. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

L. K. Tae, C. G. Ji, and L. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

P. Zhu and J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

J. Alloys Compd. (1)

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

J. Mater. Chem. C (2)

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C 4(2), 391–397 (2016).
[Crossref]

S. Wu, Y. Ye, and L. Chen, “A broadband omnidirectional absorber incorporating plasmonic metasurfaces,” J. Mater. Chem. C 6(43), 11593–11597 (2018).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Mater. Today (1)

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Nano Lett. (1)

J. N. Munday and A. Harry, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref]

Nanotechnology (1)

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Opt. Commun. (2)

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Opt. Express (10)

C. H. Lin, R. L. Chen, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
[Crossref]

C. H. Lin, R. L. Chen, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
[Crossref]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref]

Y. Liang, W. Peng, R. Hu, and L. Xie, “Extraordinary optical properties in the subwavelength metallodielectric free-standing grating,” Opt. Express 22(16), 19484–19494 (2014).
[Crossref]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref]

S. Han and B. J. Lee, “Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum,” Opt. Express 24(2), A202–A214 (2016).
[Crossref]

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
[Crossref]

Y. Li, Z. Liu, H. Zhang, P. Tang, B. Wu, and G. Liu, “Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks,” Opt. Express 27(8), 11809–11818 (2019).
[Crossref]

S. Shen, J. Tang, J. Yu, L. Zhou, and Y. Zhou, “Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal,” Opt. Express 27(18), 24989–24999 (2019).
[Crossref]

Plasmonics (1)

M. Batuhan and C. Sabah, “multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting,” Plasmonics 11(5), 1313–1321 (2016).
[Crossref]

Prog. Electromagn. Res. (2)

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
[Crossref]

Sci. Rep. (1)

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Other (1)

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Elsevier, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram and geometric parameters of the proposed absorber.
Fig. 2.
Fig. 2. Absorbance spectra at normal incidence for TE and TM polarization, respectively.
Fig. 3.
Fig. 3. Absorbance spectra as a function of the incident angle for TE polarization (a) and TM polarization (b).
Fig. 4.
Fig. 4. Calculated electric field distributions along y-axis for TE polarization at normal incidence: (a) at λ=385 nm; (b) at 600 nm.
Fig. 5.
Fig. 5. Calculated magnetic field distributions along y-axis for TM polarization at normal incidence: (a) at λ=430 nm; (b) at 600 nm.
Fig. 6.
Fig. 6. Dependence of absorbance on the dielectric grating period p and the height of the dielectric grating h2: (a) and (c) for TE polarization; (b) and (d) for TM polarization.
Fig. 7.
Fig. 7. Dependence of absorbance on the thickness of the middle W cover layer h3 and the thickness of the top SiO2 cover layer h4: (a) and (c) for TE polarization; (b) and (d) for TM polarization.

Metrics