Abstract

The paper presents our research on the optical properties of thin-film deoxyribonucleic acid (DNA) complexes based on cetyltrimethylammonium (DNA-CTMA) deposited onto an optical elastomer substrate, which may be suitable for the construction of biophotonic devices. The study involved the measurement of Raman spectra, absorption spectra from the visible to the near-infrared region and the values of the refractive indices by m-line spectroscopy at five wavelengths (473, 632.8, 964, 1311, and 1552 nm). The samples were proved to have waveguiding properties from visible to infrared spectrum and high contrast of refractive index - the value is 0,0457. Photoluminescence measurement was done under excitation at three wavelengths (355, 405 and 450 nm) and showed one broadband with maxima at 437, 520 and 530 nm depending on the excitation wavelengths. The study has demonstrated that this combination of polymers, because of its unique properties, has great potential for the implementation of all-polymer structures in the applications of high-density photonics and biocompatible optical devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films

Woohyun Jung, Hwiseok Jun, Seongjin Hong, Bjorn Paulson, Yoon Sung Nam, and Kyunghwan Oh
Opt. Mater. Express 7(11) 3796-3808 (2017)

Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl
Appl. Opt. 46(9) 1507-1513 (2007)

Optical properties of VO2 thin films deposited on different glass substrates

Kai Dai, Jie Lian, Mark J. Miller, JunLan Wang, YuJun Shi, YuXiang Liu, HaoNan Song, and Xiao Wang
Opt. Mater. Express 9(2) 663-672 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7(11), 3796–3808 (2017).
    [Crossref]
  2. A. J. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
    [Crossref]
  3. R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
    [Crossref]
  4. J. Grote, “Biopolymer materials show promise for electronics and photonics applications,” Nanotechnology2008.
  5. J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
    [Crossref]
  6. A. J. Steckl, “DNA – a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
    [Crossref]
  7. B. Singh, S. Sariciftci, J. G. Grote, and F. Hopkins, “Bio-organic-semiconductor field-effect transistor (BiOFET) based on deoxyribonucleic acid (DNA) gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
    [Crossref]
  8. J. Hagen, W. Li, A. Steckl, J. G. Grote, and K. Hopkins, “Enhanced emission efficiency in organic light emitting diodes using deoxyribonucleic acid complex as electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
    [Crossref]
  9. E. Heckman, J. G. Grote, F. Hopkins, and P. Yaney, “Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer,” Appl. Phys. Lett. 89(18), 181116 (2006).
    [Crossref]
  10. Y. Ner, J. G. Grote, J. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye doped DNA nanofibers,” Soft Matter 4(7), 1448–1453 (2008).
    [Crossref]
  11. J. Zhou, Z. Y. Wang, X. Yang, C. Y. Wong, and E. Y. B. Pun, “Fabrication of low-loss, single-mode-channel waveguide with DNA-CTMA biopolymer by multistep processing technology,” Opt. Lett. 35(10), 1512 (2010).
    [Crossref]
  12. S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42(10), 1943–1945 (2017).
    [Crossref]
  13. L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
    [Crossref]
  14. J. S. Shumaker-Parry, R. Aebersold, and C. T. Campbell, “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76(7), 2071–2082 (2004).
    [Crossref]
  15. A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
    [Crossref]
  16. V. Prajzler, M. Neruda, and P. Nekvindova, “Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides,” J. Mater. Sci.: Mater. Electron. 29(7), 5878–5884 (2018).
    [Crossref]
  17. L. L. Wang, J. Yoshida, and N. Ogata, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)−cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
    [Crossref]
  18. Y. C. Hung, T. Y. Lin, W. T. Hsu, Y. W. Chiu, Y. S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. 34(7), 1208–1213 (2012).
    [Crossref]
  19. F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
    [Crossref]
  20. P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14(9), 291–294 (1969).
    [Crossref]
  21. V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
    [Crossref]
  22. V. Prajzler, P. Jasek, and P. Nekvindova, “Inorganic–organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS),” Microsyst. Technol. 25(6), 2249–2258 (2019).
    [Crossref]
  23. Metricon Corporation (2018). http://www.metricon.com . Accessed on 18 May 2018.
  24. V. Prajzler, P. Nekvindova, P. Hyps, and V. Jerabek, “Properties of the optical planar polymer waveguides deposited on printed circuit boards,” Radioengineering 24(2), 442–448 (2015).
    [Crossref]
  25. A. S. Anokhin, V. S. Gorelik, G. I. Dovbeshko, A. Y. Pyatyshev, and Y. I. Yuzyuk, “Difference Raman spectroscopy of DNA molecules,” J. Phys.: Conf. Ser. 584, 012022 (2015).
    [Crossref]
  26. T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
    [Crossref]
  27. G. J. Lee, Y. W. Kwon, Y. H. Kim, and E. H. Choi, “Raman spectroscopic study of plasma-treated salmon DNA,” Appl. Phys. Lett. 102(2), 021911 (2013).
  28. A. Samoc, Z. Galewski, M. Samoc, and J. G. Grote, “Prism coupler and microscopic investigations of DNA films,” Proc. SPIE 6646, 664607 (2007).
    [Crossref]
  29. F. Y. Zhang, Z. Y. Wang, C. Yan, and J. Zhou, “Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material,” Optoelectron. Lett. 8(2), 97–100 (2012).
    [Crossref]
  30. M. J. Adams, “An introduction to optical waveguides,” Wiley, Toronto1981.
  31. V. Prajzler, P. Nekvindova, J. Spirkova, and M. Novotny, “The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique,” J. Mater. Sci.: Mater. Electron. 28(11), 7951–7961 (2017).
    [Crossref]
  32. Y. Kokubun, “High index contrast optical waveguides and their applications to microring filter circuit and wavelength selective switch,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E90-C(5), 1037–1045 (2007).
    [Crossref]
  33. P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
    [Crossref]
  34. G. Zhang, L. Wang, J. Yoshida, and N. Ogata, “Optical and optoelectronic materials derived from biopolymer, deoxyribonucleic acid (DNA),” Proc. SPIE 4580, 337–346 (2001).
    [Crossref]
  35. V. Prajzler, M. Neruda, P. Jasek, and P. Nekvindova, “The properties of free-standing epoxy polymer multi-mode optical waveguides,” Microsyst. Technol. 25(1), 257–264 (2019).
    [Crossref]
  36. V. Prajzler, P. Hyps, R. Mastera, and P. Nekvindova, “Properties of siloxane based optical waveguides deposited on transparent paper and foil,” Radioengineering 25(2), 230–235 (2016).
    [Crossref]
  37. W. Jung, S. Hong, T. Kim, and K. Oh, “Optical study of light-emitting bioploymer based on deoxyribonucleic acid-cetylmethyammonium chloride doped with riboflavin,” Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) 2017.
  38. M. S. P. Reddy and C. Park, “Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes,” Sci. Rep. 6, 32306 (2016).
    [Crossref]

2019 (2)

V. Prajzler, P. Jasek, and P. Nekvindova, “Inorganic–organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS),” Microsyst. Technol. 25(6), 2249–2258 (2019).
[Crossref]

V. Prajzler, M. Neruda, P. Jasek, and P. Nekvindova, “The properties of free-standing epoxy polymer multi-mode optical waveguides,” Microsyst. Technol. 25(1), 257–264 (2019).
[Crossref]

2018 (2)

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

V. Prajzler, M. Neruda, and P. Nekvindova, “Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides,” J. Mater. Sci.: Mater. Electron. 29(7), 5878–5884 (2018).
[Crossref]

2017 (5)

S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42(10), 1943–1945 (2017).
[Crossref]

W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7(11), 3796–3808 (2017).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
[Crossref]

V. Prajzler, P. Nekvindova, J. Spirkova, and M. Novotny, “The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique,” J. Mater. Sci.: Mater. Electron. 28(11), 7951–7961 (2017).
[Crossref]

2016 (2)

V. Prajzler, P. Hyps, R. Mastera, and P. Nekvindova, “Properties of siloxane based optical waveguides deposited on transparent paper and foil,” Radioengineering 25(2), 230–235 (2016).
[Crossref]

M. S. P. Reddy and C. Park, “Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes,” Sci. Rep. 6, 32306 (2016).
[Crossref]

2015 (2)

V. Prajzler, P. Nekvindova, P. Hyps, and V. Jerabek, “Properties of the optical planar polymer waveguides deposited on printed circuit boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

A. S. Anokhin, V. S. Gorelik, G. I. Dovbeshko, A. Y. Pyatyshev, and Y. I. Yuzyuk, “Difference Raman spectroscopy of DNA molecules,” J. Phys.: Conf. Ser. 584, 012022 (2015).
[Crossref]

2014 (1)

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

2013 (2)

G. J. Lee, Y. W. Kwon, Y. H. Kim, and E. H. Choi, “Raman spectroscopic study of plasma-treated salmon DNA,” Appl. Phys. Lett. 102(2), 021911 (2013).

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

2012 (3)

Y. C. Hung, T. Y. Lin, W. T. Hsu, Y. W. Chiu, Y. S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. 34(7), 1208–1213 (2012).
[Crossref]

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

F. Y. Zhang, Z. Y. Wang, C. Yan, and J. Zhou, “Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material,” Optoelectron. Lett. 8(2), 97–100 (2012).
[Crossref]

2011 (1)

A. J. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

2010 (1)

2009 (1)

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

2008 (1)

Y. Ner, J. G. Grote, J. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye doped DNA nanofibers,” Soft Matter 4(7), 1448–1453 (2008).
[Crossref]

2007 (3)

A. J. Steckl, “DNA – a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[Crossref]

A. Samoc, Z. Galewski, M. Samoc, and J. G. Grote, “Prism coupler and microscopic investigations of DNA films,” Proc. SPIE 6646, 664607 (2007).
[Crossref]

Y. Kokubun, “High index contrast optical waveguides and their applications to microring filter circuit and wavelength selective switch,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E90-C(5), 1037–1045 (2007).
[Crossref]

2006 (3)

B. Singh, S. Sariciftci, J. G. Grote, and F. Hopkins, “Bio-organic-semiconductor field-effect transistor (BiOFET) based on deoxyribonucleic acid (DNA) gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

J. Hagen, W. Li, A. Steckl, J. G. Grote, and K. Hopkins, “Enhanced emission efficiency in organic light emitting diodes using deoxyribonucleic acid complex as electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

E. Heckman, J. G. Grote, F. Hopkins, and P. Yaney, “Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer,” Appl. Phys. Lett. 89(18), 181116 (2006).
[Crossref]

2005 (1)

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

2004 (1)

J. S. Shumaker-Parry, R. Aebersold, and C. T. Campbell, “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76(7), 2071–2082 (2004).
[Crossref]

2001 (2)

L. L. Wang, J. Yoshida, and N. Ogata, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)−cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

G. Zhang, L. Wang, J. Yoshida, and N. Ogata, “Optical and optoelectronic materials derived from biopolymer, deoxyribonucleic acid (DNA),” Proc. SPIE 4580, 337–346 (2001).
[Crossref]

1969 (1)

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14(9), 291–294 (1969).
[Crossref]

Adams, M. J.

M. J. Adams, “An introduction to optical waveguides,” Wiley, Toronto1981.

Aebersold, R.

J. S. Shumaker-Parry, R. Aebersold, and C. T. Campbell, “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76(7), 2071–2082 (2004).
[Crossref]

Aga, R.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Anokhin, A. S.

A. S. Anokhin, V. S. Gorelik, G. I. Dovbeshko, A. Y. Pyatyshev, and Y. I. Yuzyuk, “Difference Raman spectroscopy of DNA molecules,” J. Phys.: Conf. Ser. 584, 012022 (2015).
[Crossref]

Bartsch, C. M.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Ben Azouz, A.

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Brabazon, D.

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Burikov, S. A.

T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
[Crossref]

Campbell, C. T.

J. S. Shumaker-Parry, R. Aebersold, and C. T. Campbell, “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76(7), 2071–2082 (2004).
[Crossref]

Chang, H. C.

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Cheng, Z. Q.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Chiu, Y. W.

Y. C. Hung, T. Y. Lin, W. T. Hsu, Y. W. Chiu, Y. S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. 34(7), 1208–1213 (2012).
[Crossref]

Choi, E. H.

G. J. Lee, Y. W. Kwon, Y. H. Kim, and E. H. Choi, “Raman spectroscopic study of plasma-treated salmon DNA,” Appl. Phys. Lett. 102(2), 021911 (2013).

Costa, R.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

Cusmai, G.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

Dalton, L. R.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Diamond, D.

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Diggs, D. E.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Dolenko, S. A.

T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
[Crossref]

Dolenko, T. A.

T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
[Crossref]

Dovbeshko, G. I.

A. S. Anokhin, V. S. Gorelik, G. I. Dovbeshko, A. Y. Pyatyshev, and Y. I. Yuzyuk, “Difference Raman spectroscopy of DNA molecules,” J. Phys.: Conf. Ser. 584, 012022 (2015).
[Crossref]

Efitorov, A. O.

T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
[Crossref]

Fehrman-Cory, E. M.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Fruk, L.

Y. C. Hung, T. Y. Lin, W. T. Hsu, Y. W. Chiu, Y. S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. 34(7), 1208–1213 (2012).
[Crossref]

Galewski, Z.

A. Samoc, Z. Galewski, M. Samoc, and J. G. Grote, “Prism coupler and microscopic investigations of DNA films,” Proc. SPIE 6646, 664607 (2007).
[Crossref]

Gomez, E.

A. J. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

Gorelik, V. S.

A. S. Anokhin, V. S. Gorelik, G. I. Dovbeshko, A. Y. Pyatyshev, and Y. I. Yuzyuk, “Difference Raman spectroscopy of DNA molecules,” J. Phys.: Conf. Ser. 584, 012022 (2015).
[Crossref]

Grote, J.

A. J. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

J. Grote, “Biopolymer materials show promise for electronics and photonics applications,” Nanotechnology2008.

Grote, J. G.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Y. Ner, J. G. Grote, J. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye doped DNA nanofibers,” Soft Matter 4(7), 1448–1453 (2008).
[Crossref]

A. Samoc, Z. Galewski, M. Samoc, and J. G. Grote, “Prism coupler and microscopic investigations of DNA films,” Proc. SPIE 6646, 664607 (2007).
[Crossref]

E. Heckman, J. G. Grote, F. Hopkins, and P. Yaney, “Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer,” Appl. Phys. Lett. 89(18), 181116 (2006).
[Crossref]

J. Hagen, W. Li, A. Steckl, J. G. Grote, and K. Hopkins, “Enhanced emission efficiency in organic light emitting diodes using deoxyribonucleic acid complex as electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

B. Singh, S. Sariciftci, J. G. Grote, and F. Hopkins, “Bio-organic-semiconductor field-effect transistor (BiOFET) based on deoxyribonucleic acid (DNA) gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Guo, B. H.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Gwak, J.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Hagen, J.

J. Hagen, W. Li, A. Steckl, J. G. Grote, and K. Hopkins, “Enhanced emission efficiency in organic light emitting diodes using deoxyribonucleic acid complex as electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

Hagen, J. A.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Heckman, E.

E. Heckman, J. G. Grote, F. Hopkins, and P. Yaney, “Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer,” Appl. Phys. Lett. 89(18), 181116 (2006).
[Crossref]

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Heckman, E. M.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Hong, S.

Hopkins, F.

E. Heckman, J. G. Grote, F. Hopkins, and P. Yaney, “Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer,” Appl. Phys. Lett. 89(18), 181116 (2006).
[Crossref]

B. Singh, S. Sariciftci, J. G. Grote, and F. Hopkins, “Bio-organic-semiconductor field-effect transistor (BiOFET) based on deoxyribonucleic acid (DNA) gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

Hopkins, F. K.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Hopkins, K.

J. Hagen, W. Li, A. Steckl, J. G. Grote, and K. Hopkins, “Enhanced emission efficiency in organic light emitting diodes using deoxyribonucleic acid complex as electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

Hsu, W. T.

Y. C. Hung, T. Y. Lin, W. T. Hsu, Y. W. Chiu, Y. S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. 34(7), 1208–1213 (2012).
[Crossref]

Hung, Y. C.

Y. C. Hung, T. Y. Lin, W. T. Hsu, Y. W. Chiu, Y. S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. 34(7), 1208–1213 (2012).
[Crossref]

Hyps, P.

V. Prajzler, P. Hyps, R. Mastera, and P. Nekvindova, “Properties of siloxane based optical waveguides deposited on transparent paper and foil,” Radioengineering 25(2), 230–235 (2016).
[Crossref]

V. Prajzler, P. Nekvindova, P. Hyps, and V. Jerabek, “Properties of the optical planar polymer waveguides deposited on printed circuit boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Jasek, P.

V. Prajzler, P. Jasek, and P. Nekvindova, “Inorganic–organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS),” Microsyst. Technol. 25(6), 2249–2258 (2019).
[Crossref]

V. Prajzler, M. Neruda, P. Jasek, and P. Nekvindova, “The properties of free-standing epoxy polymer multi-mode optical waveguides,” Microsyst. Technol. 25(1), 257–264 (2019).
[Crossref]

Jeong, H.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Jerabek, V.

V. Prajzler, P. Nekvindova, P. Hyps, and V. Jerabek, “Properties of the optical planar polymer waveguides deposited on printed circuit boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Jun, H.

Jung, W.

Kassani, S. H.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Khazaeinezhad, R.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Kim, S.

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

Kim, T.

S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42(10), 1943–1945 (2017).
[Crossref]

W. Jung, S. Hong, T. Kim, and K. Oh, “Optical study of light-emitting bioploymer based on deoxyribonucleic acid-cetylmethyammonium chloride doped with riboflavin,” Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) 2017.

Kim, Y. H.

G. J. Lee, Y. W. Kwon, Y. H. Kim, and E. H. Choi, “Raman spectroscopic study of plasma-treated salmon DNA,” Appl. Phys. Lett. 102(2), 021911 (2013).

Kokubun, Y.

Y. Kokubun, “High index contrast optical waveguides and their applications to microring filter circuit and wavelength selective switch,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E90-C(5), 1037–1045 (2007).
[Crossref]

Kwon, Y. W.

G. J. Lee, Y. W. Kwon, Y. H. Kim, and E. H. Choi, “Raman spectroscopic study of plasma-treated salmon DNA,” Appl. Phys. Lett. 102(2), 021911 (2013).

Laptinskiy, K. A.

T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
[Crossref]

Lee, G. J.

G. J. Lee, Y. W. Kwon, Y. H. Kim, and E. H. Choi, “Raman spectroscopic study of plasma-treated salmon DNA,” Appl. Phys. Lett. 102(2), 021911 (2013).

Lesko, A. C.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Li, S. P.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Li, W.

J. Hagen, W. Li, A. Steckl, J. G. Grote, and K. Hopkins, “Enhanced emission efficiency in organic light emitting diodes using deoxyribonucleic acid complex as electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

Lin, T. Y.

Y. C. Hung, T. Y. Lin, W. T. Hsu, Y. W. Chiu, Y. S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. 34(7), 1208–1213 (2012).
[Crossref]

Liu, J.

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Marczak, S.

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Martin, R. J.

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14(9), 291–294 (1969).
[Crossref]

Mastera, R.

V. Prajzler, P. Hyps, R. Mastera, and P. Nekvindova, “Properties of siloxane based optical waveguides deposited on transparent paper and foil,” Radioengineering 25(2), 230–235 (2016).
[Crossref]

Melloni, A.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

Miller, T. L.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Min, K.

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

Morichetti, F.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

Nam, Y. S.

Nand, A.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Nazari, T.

Nekvindova, P.

V. Prajzler, P. Jasek, and P. Nekvindova, “Inorganic–organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS),” Microsyst. Technol. 25(6), 2249–2258 (2019).
[Crossref]

V. Prajzler, M. Neruda, P. Jasek, and P. Nekvindova, “The properties of free-standing epoxy polymer multi-mode optical waveguides,” Microsyst. Technol. 25(1), 257–264 (2019).
[Crossref]

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

V. Prajzler, M. Neruda, and P. Nekvindova, “Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides,” J. Mater. Sci.: Mater. Electron. 29(7), 5878–5884 (2018).
[Crossref]

V. Prajzler, P. Nekvindova, J. Spirkova, and M. Novotny, “The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique,” J. Mater. Sci.: Mater. Electron. 28(11), 7951–7961 (2017).
[Crossref]

V. Prajzler, P. Hyps, R. Mastera, and P. Nekvindova, “Properties of siloxane based optical waveguides deposited on transparent paper and foil,” Radioengineering 25(2), 230–235 (2016).
[Crossref]

V. Prajzler, P. Nekvindova, P. Hyps, and V. Jerabek, “Properties of the optical planar polymer waveguides deposited on printed circuit boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Nelson, R. L.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Ner, Y.

Y. Ner, J. G. Grote, J. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye doped DNA nanofibers,” Soft Matter 4(7), 1448–1453 (2008).
[Crossref]

Neruda, M.

V. Prajzler, M. Neruda, P. Jasek, and P. Nekvindova, “The properties of free-standing epoxy polymer multi-mode optical waveguides,” Microsyst. Technol. 25(1), 257–264 (2019).
[Crossref]

V. Prajzler, M. Neruda, and P. Nekvindova, “Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides,” J. Mater. Sci.: Mater. Electron. 29(7), 5878–5884 (2018).
[Crossref]

Novotny, M.

V. Prajzler, P. Nekvindova, J. Spirkova, and M. Novotny, “The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique,” J. Mater. Sci.: Mater. Electron. 28(11), 7951–7961 (2017).
[Crossref]

O’Neill, P. F.

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Ogata, N.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

L. L. Wang, J. Yoshida, and N. Ogata, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)−cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

G. Zhang, L. Wang, J. Yoshida, and N. Ogata, “Optical and optoelectronic materials derived from biopolymer, deoxyribonucleic acid (DNA),” Proc. SPIE 4580, 337–346 (2001).
[Crossref]

Oh, K.

W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7(11), 3796–3808 (2017).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42(10), 1943–1945 (2017).
[Crossref]

W. Jung, S. Hong, T. Kim, and K. Oh, “Optical study of light-emitting bioploymer based on deoxyribonucleic acid-cetylmethyammonium chloride doped with riboflavin,” Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) 2017.

Ouchen, F.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Park, C.

M. S. P. Reddy and C. Park, “Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes,” Sci. Rep. 6, 32306 (2016).
[Crossref]

Paulson, B.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7(11), 3796–3808 (2017).
[Crossref]

Prajzler, V.

V. Prajzler, P. Jasek, and P. Nekvindova, “Inorganic–organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS),” Microsyst. Technol. 25(6), 2249–2258 (2019).
[Crossref]

V. Prajzler, M. Neruda, P. Jasek, and P. Nekvindova, “The properties of free-standing epoxy polymer multi-mode optical waveguides,” Microsyst. Technol. 25(1), 257–264 (2019).
[Crossref]

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

V. Prajzler, M. Neruda, and P. Nekvindova, “Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides,” J. Mater. Sci.: Mater. Electron. 29(7), 5878–5884 (2018).
[Crossref]

V. Prajzler, P. Nekvindova, J. Spirkova, and M. Novotny, “The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique,” J. Mater. Sci.: Mater. Electron. 28(11), 7951–7961 (2017).
[Crossref]

V. Prajzler, P. Hyps, R. Mastera, and P. Nekvindova, “Properties of siloxane based optical waveguides deposited on transparent paper and foil,” Radioengineering 25(2), 230–235 (2016).
[Crossref]

V. Prajzler, P. Nekvindova, P. Hyps, and V. Jerabek, “Properties of the optical planar polymer waveguides deposited on printed circuit boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Pun, E. Y. B.

Pyatyshev, A. Y.

A. S. Anokhin, V. S. Gorelik, G. I. Dovbeshko, A. Y. Pyatyshev, and Y. I. Yuzyuk, “Difference Raman spectroscopy of DNA molecules,” J. Phys.: Conf. Ser. 584, 012022 (2015).
[Crossref]

Quan, C.

Reddy, M. S. P.

M. S. P. Reddy and C. Park, “Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes,” Sci. Rep. 6, 32306 (2016).
[Crossref]

Rotermund, F.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Samoc, A.

A. Samoc, Z. Galewski, M. Samoc, and J. G. Grote, “Prism coupler and microscopic investigations of DNA films,” Proc. SPIE 6646, 664607 (2007).
[Crossref]

Samoc, M.

A. Samoc, Z. Galewski, M. Samoc, and J. G. Grote, “Prism coupler and microscopic investigations of DNA films,” Proc. SPIE 6646, 664607 (2007).
[Crossref]

Sariciftci, S.

B. Singh, S. Sariciftci, J. G. Grote, and F. Hopkins, “Bio-organic-semiconductor field-effect transistor (BiOFET) based on deoxyribonucleic acid (DNA) gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

Sarmanova, O. E.

T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
[Crossref]

Shumaker-Parry, J. S.

J. S. Shumaker-Parry, R. Aebersold, and C. T. Campbell, “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76(7), 2071–2082 (2004).
[Crossref]

Singh, B.

B. Singh, S. Sariciftci, J. G. Grote, and F. Hopkins, “Bio-organic-semiconductor field-effect transistor (BiOFET) based on deoxyribonucleic acid (DNA) gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

Singh, K. M.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Slouka, Z.

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Song, L. S.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Song, S.

Sotzing, G. A.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Y. Ner, J. G. Grote, J. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye doped DNA nanofibers,” Soft Matter 4(7), 1448–1453 (2008).
[Crossref]

Spaeth, H.

A. J. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

Spirkova, J.

V. Prajzler, P. Nekvindova, J. Spirkova, and M. Novotny, “The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique,” J. Mater. Sci.: Mater. Electron. 28(11), 7951–7961 (2017).
[Crossref]

Steckl, A.

J. Hagen, W. Li, A. Steckl, J. G. Grote, and K. Hopkins, “Enhanced emission efficiency in organic light emitting diodes using deoxyribonucleic acid complex as electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

Steckl, A. J.

A. J. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

A. J. Steckl, “DNA – a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[Crossref]

Stone, M. O.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Stuart, J.

Y. Ner, J. G. Grote, J. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye doped DNA nanofibers,” Soft Matter 4(7), 1448–1453 (2008).
[Crossref]

Telek, B. A.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

Tien, P. K.

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14(9), 291–294 (1969).
[Crossref]

Ulrich, R.

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14(9), 291–294 (1969).
[Crossref]

Vazquez, M.

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Vervald, E. N.

T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
[Crossref]

Wang, L.

G. Zhang, L. Wang, J. Yoshida, and N. Ogata, “Optical and optoelectronic materials derived from biopolymer, deoxyribonucleic acid (DNA),” Proc. SPIE 4580, 337–346 (2001).
[Crossref]

Wang, L. L.

L. L. Wang, J. Yoshida, and N. Ogata, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)−cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Wang, Y. M.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Wang, Y. S.

Y. C. Hung, T. Y. Lin, W. T. Hsu, Y. W. Chiu, Y. S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. 34(7), 1208–1213 (2012).
[Crossref]

Wang, Z. Y.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

F. Y. Zhang, Z. Y. Wang, C. Yan, and J. Zhou, “Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material,” Optoelectron. Lett. 8(2), 97–100 (2012).
[Crossref]

J. Zhou, Z. Y. Wang, X. Yang, C. Y. Wong, and E. Y. B. Pun, “Fabrication of low-loss, single-mode-channel waveguide with DNA-CTMA biopolymer by multistep processing technology,” Opt. Lett. 35(10), 1512 (2010).
[Crossref]

Wong, C. Y.

Yan, C.

F. Y. Zhang, Z. Y. Wang, C. Yan, and J. Zhou, “Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material,” Optoelectron. Lett. 8(2), 97–100 (2012).
[Crossref]

Yaney, P.

E. Heckman, J. G. Grote, F. Hopkins, and P. Yaney, “Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer,” Appl. Phys. Lett. 89(18), 181116 (2006).
[Crossref]

Yaney, P. P.

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Yang, X.

Yeom, D. I.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Yoshida, J.

L. L. Wang, J. Yoshida, and N. Ogata, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)−cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

G. Zhang, L. Wang, J. Yoshida, and N. Ogata, “Optical and optoelectronic materials derived from biopolymer, deoxyribonucleic acid (DNA),” Proc. SPIE 4580, 337–346 (2001).
[Crossref]

You, H.

A. J. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

Yuzyuk, Y. I.

A. S. Anokhin, V. S. Gorelik, G. I. Dovbeshko, A. Y. Pyatyshev, and Y. I. Yuzyuk, “Difference Raman spectroscopy of DNA molecules,” J. Phys.: Conf. Ser. 584, 012022 (2015).
[Crossref]

Zetts, J. S.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Zhang, F. Y.

F. Y. Zhang, Z. Y. Wang, C. Yan, and J. Zhou, “Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material,” Optoelectron. Lett. 8(2), 97–100 (2012).
[Crossref]

Zhang, G.

G. Zhang, L. Wang, J. Yoshida, and N. Ogata, “Optical and optoelectronic materials derived from biopolymer, deoxyribonucleic acid (DNA),” Proc. SPIE 4580, 337–346 (2001).
[Crossref]

Zheng, Z.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Zhou, D. S.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Zhou, J.

F. Y. Zhang, Z. Y. Wang, C. Yan, and J. Zhou, “Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material,” Optoelectron. Lett. 8(2), 97–100 (2012).
[Crossref]

J. Zhou, Z. Y. Wang, X. Yang, C. Y. Wong, and E. Y. B. Pun, “Fabrication of low-loss, single-mode-channel waveguide with DNA-CTMA biopolymer by multistep processing technology,” Opt. Lett. 35(10), 1512 (2010).
[Crossref]

Zhou, W. F.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Zhu, J. S.

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Anal. Chem. (1)

J. S. Shumaker-Parry, R. Aebersold, and C. T. Campbell, “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76(7), 2071–2082 (2004).
[Crossref]

Appl. Phys. Lett. (5)

F. Ouchen, G. A. Sotzing, T. L. Miller, K. M. Singh, B. A. Telek, A. C. Lesko, R. Aga, E. M. Fehrman-Cory, P. P. Yaney, J. G. Grote, C. M. Bartsch, and E. M. Heckman, “Modified processing techniques of a DNA biopolymer for enhanced performance in photonics applications,” Appl. Phys. Lett. 101(15), 153702 (2012).
[Crossref]

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14(9), 291–294 (1969).
[Crossref]

J. Hagen, W. Li, A. Steckl, J. G. Grote, and K. Hopkins, “Enhanced emission efficiency in organic light emitting diodes using deoxyribonucleic acid complex as electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

E. Heckman, J. G. Grote, F. Hopkins, and P. Yaney, “Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer,” Appl. Phys. Lett. 89(18), 181116 (2006).
[Crossref]

G. J. Lee, Y. W. Kwon, Y. H. Kim, and E. H. Choi, “Raman spectroscopic study of plasma-treated salmon DNA,” Appl. Phys. Lett. 102(2), 021911 (2013).

Biomicrofluidics (1)

P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics 8(5), 052112 (2014).
[Crossref]

Chem. Mater. (1)

L. L. Wang, J. Yoshida, and N. Ogata, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)−cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Int. J. Mater. Prod. Technol. (1)

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

J. Appl. Phys. (1)

B. Singh, S. Sariciftci, J. G. Grote, and F. Hopkins, “Bio-organic-semiconductor field-effect transistor (BiOFET) based on deoxyribonucleic acid (DNA) gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

J. Mater. Sci.: Mater. Electron. (2)

V. Prajzler, M. Neruda, and P. Nekvindova, “Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides,” J. Mater. Sci.: Mater. Electron. 29(7), 5878–5884 (2018).
[Crossref]

V. Prajzler, P. Nekvindova, J. Spirkova, and M. Novotny, “The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique,” J. Mater. Sci.: Mater. Electron. 28(11), 7951–7961 (2017).
[Crossref]

J. Phys.: Conf. Ser. (1)

A. S. Anokhin, V. S. Gorelik, G. I. Dovbeshko, A. Y. Pyatyshev, and Y. I. Yuzyuk, “Difference Raman spectroscopy of DNA molecules,” J. Phys.: Conf. Ser. 584, 012022 (2015).
[Crossref]

Laser Phys. (1)

T. A. Dolenko, S. A. Burikov, E. N. Vervald, A. O. Efitorov, K. A. Laptinskiy, O. E. Sarmanova, and S. A. Dolenko, “Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks,” Laser Phys. 27(2), 025203 (2017).
[Crossref]

Materials (1)

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

Microsyst. Technol. (2)

V. Prajzler, P. Jasek, and P. Nekvindova, “Inorganic–organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS),” Microsyst. Technol. 25(6), 2249–2258 (2019).
[Crossref]

V. Prajzler, M. Neruda, P. Jasek, and P. Nekvindova, “The properties of free-standing epoxy polymer multi-mode optical waveguides,” Microsyst. Technol. 25(1), 257–264 (2019).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, “DNA photonics,” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Nat. Photonics (1)

A. J. Steckl, “DNA – a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

Y. C. Hung, T. Y. Lin, W. T. Hsu, Y. W. Chiu, Y. S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. 34(7), 1208–1213 (2012).
[Crossref]

Opt. Mater. Express (1)

Opt. Photonics News (1)

A. J. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

Optoelectron. Lett. (1)

F. Y. Zhang, Z. Y. Wang, C. Yan, and J. Zhou, “Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material,” Optoelectron. Lett. 8(2), 97–100 (2012).
[Crossref]

Proc. SPIE (2)

A. Samoc, Z. Galewski, M. Samoc, and J. G. Grote, “Prism coupler and microscopic investigations of DNA films,” Proc. SPIE 6646, 664607 (2007).
[Crossref]

G. Zhang, L. Wang, J. Yoshida, and N. Ogata, “Optical and optoelectronic materials derived from biopolymer, deoxyribonucleic acid (DNA),” Proc. SPIE 4580, 337–346 (2001).
[Crossref]

Radioengineering (2)

V. Prajzler, P. Hyps, R. Mastera, and P. Nekvindova, “Properties of siloxane based optical waveguides deposited on transparent paper and foil,” Radioengineering 25(2), 230–235 (2016).
[Crossref]

V. Prajzler, P. Nekvindova, P. Hyps, and V. Jerabek, “Properties of the optical planar polymer waveguides deposited on printed circuit boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Sci. Rep. (2)

M. S. P. Reddy and C. Park, “Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes,” Sci. Rep. 6, 32306 (2016).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D. I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Sens. Actuators, B (1)

L. S. Song, Z. Y. Wang, D. S. Zhou, A. Nand, S. P. Li, B. H. Guo, Y. M. Wang, Z. Q. Cheng, W. F. Zhou, Z. Zheng, and J. S. Zhu, “Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction,” Sens. Actuators, B 181, 652–660 (2013).
[Crossref]

Soft Matter (1)

Y. Ner, J. G. Grote, J. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye doped DNA nanofibers,” Soft Matter 4(7), 1448–1453 (2008).
[Crossref]

Trans. Inst. Electron., Inf. Commun. Eng., Sect. E (1)

Y. Kokubun, “High index contrast optical waveguides and their applications to microring filter circuit and wavelength selective switch,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E90-C(5), 1037–1045 (2007).
[Crossref]

Other (4)

M. J. Adams, “An introduction to optical waveguides,” Wiley, Toronto1981.

W. Jung, S. Hong, T. Kim, and K. Oh, “Optical study of light-emitting bioploymer based on deoxyribonucleic acid-cetylmethyammonium chloride doped with riboflavin,” Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) 2017.

J. Grote, “Biopolymer materials show promise for electronics and photonics applications,” Nanotechnology2008.

Metricon Corporation (2018). http://www.metricon.com . Accessed on 18 May 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. A schematic process of DNA-CTMA precipitate recrystallisation.
Fig. 2.
Fig. 2. The Raman spectra of the DNA-CTMA sample deposited onto the PDMS substrate: the details of the spectra in the range of 900–1800 cm−1 of the sample containing 500 ppm DNA-CTMA, respectively. The bottom part shows the PDMS substrate spectrum, the spectrum in the middle is the real measured DNA-CTMA spectrum and the upper spectrum depicts the measured spectrum that was subtracted from the PDMS substrate spectrum. On the left side of the picture is a list of the assignments of particular bands. Abbreviations ade, thy, gua, and cyt refer to the DNA bases indicates the deoxyribose phosphate backbone. The type of molecular vibration, when known, is indicated by either the symbol ν for stretching or δ for deformation modes.
Fig. 3.
Fig. 3. The absorption spectra of DNA-CTMA layers on the PDMS substrate.
Fig. 4.
Fig. 4. The calculation of the TE modes for DNA layers deposited onto the PDMS substrate: (a) the wavelength of 632.8 nm and (b) the wavelength of 1550 nm.
Fig. 5.
Fig. 5. The assessment of the critical angles of incidence θDNA used for the evaluation of the effective refractive indices of the DNA-CTMA layers and the critical angles of incidence θPDMS used for the evaluation of the refractive indices of the PDMS substrate at the wavelengths: (a) 473 nm, (b) 632.8 nm, (c) 964 nm, (d) 1311 nm, (e) 1552 nm, (f) PDMS substrate.
Fig. 6.
Fig. 6. The effective refractive indices of the DNA-CTMA layers deposited on the PDMS substrate. The values of effective refractive indices were evaluated according to measured thicknesses of deposited layers.
Fig. 7.
Fig. 7. The luminescence spectra of the DNA-CTMA layers deposited on the PDMS substrate, excitation λex= 355 nm.

Tables (2)

Tables Icon

Table 1. The calculated values of the thickness of the DNA optical planar waveguides for TE modes at the wavelengths of 632.8 nm and 1550 nm (refractive indices at 632.8 nm: PDMS substrate ns = 1.4124 [31], DNA core nf = 1.5445 [28]; refractive indices at 1550 nm: PDMS substrate ns = 1.4021 [31], DNA core nf = 1.48459 [29], suggested upper air layer nc = 1).

Tables Icon

Table 2. The evaluation of the DNA-CTMA effective refractive indices. The waveguiding properties of the deposited DNA-CTMA layer: the angle of incidence of the TE modes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n = n p  sin θ ,
2 π λ 0 h n f 2 n e f f 2 = a r c t a n ( p 12 n e f f 2 n s 2 n f 2 n e f f 2 ) + a r c t a n ( p 13 n e f f 2 n c 2 n f 2 n e f f 2 ) + k π ,
h f ( TE ) = λ O k + 1 π arctan ( n s 2 n c 2 n f 2 n s 2 ) 2 n f 2 n s 2
Δ = n 1 2 n 2 2 2 n 1 2 ,

Metrics