Abstract

Semiconductors such as InAs with high dopant concentrations have a variety of applications, including as components of mid-infrared optoelectronic devices. Unfortunately, growth of these materials by molecular beam epitaxy is challenging, requiring high growth rates and low growth temperatures. We show that the use of a bismuth surfactant improves silicon incorporation into InAs while simultaneously reducing the optical scattering rate, increasing the carrier mobility, reducing surface roughness, and enabling growth at higher substrate temperatures and slower growth rates. We explain our findings using microscopic theories of dopant segregation and defect formation in III-V materials.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Epitaxial growth of InAs/GaAs quantum dots on {113}-faceted Ge/Si (001) hollow substrate

Jie-Yin Zhang, Wen-Qi Wei, Jian-Huan Wang, Hui Cong, Qi Feng, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang
Opt. Mater. Express 10(4) 1045-1052 (2020)

Influence of Bi on morphology and optical properties of InAs QDs

Lijuan Wang, Wenwu Pan, Xiren Chen, Xiaoyan Wu, Jun Shao, and Shumin Wang
Opt. Mater. Express 7(12) 4249-4257 (2017)

C/L-band emission of InAs QDs monolithically grown on Ge substrate

Wen-Qi Wei, Jian-Huan Wang, Yue Gong, Jin-An Shi, Lin Gu, Hong-Xing Xu, Ting Wang, and Jian-Jun Zhang
Opt. Mater. Express 7(8) 2955-2961 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  2. S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(5), 052601 (2014).
    [Crossref]
  3. S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 31(3), 03C121 (2013).
    [Crossref]
  4. S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
    [Crossref]
  5. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
    [Crossref]
  6. V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
    [Crossref]
  7. T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–303 (2014).
    [Crossref]
  8. T. Taliercio, V. N. Guilengui, L. Cerutti, J.-B. Rodriguez, F. Barho, M.-J. M. Rodrigo, F. Gonzalez-Posada, E. Tournié, M. Niehle, and A. Trampert, “Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix,” Opt. Express 23(23), 29423 (2015).
    [Crossref]
  9. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [Crossref]
  10. D. Wei, C. Harris, C. C. Bomberger, J. Zhang, J. Zide, and S. Law, “Single-material semiconductor hyperbolic metamaterials,” Opt. Express 24(8), 8735–8745 (2016).
    [Crossref]
  11. M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial,” Sci. Rep. 7(1), 15312 (2017).
    [Crossref]
  12. K. Feng, G. Harden, D. L. Sivco, and A. J. Hoffman, “Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators,” ACS Photonics 4(7), 1621–1626 (2017).
    [Crossref]
  13. H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
    [Crossref]
  14. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19(15), 14594 (2011).
    [Crossref]
  15. M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
    [Crossref]
  16. Y. S. Fatt, “Evidence of silicon segregation as a function of arsenic overpressure in GaAs grown by molecular beam epitaxy,” J. Appl. Phys. 72(7), 2846–2849 (1992).
    [Crossref]
  17. H. Yamaguchi and Y. Horikoshi, “Surface-defect formation on heavily doped InAs and GaAs layers studied by scanning tunneling microscopy,” Phys. Rev. B 53(8), 4565–4569 (1996).
    [Crossref]
  18. E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman, and L. C. Hopkins, “Fermi-level-pinning-induced impurity redistribution in semiconductors during epitaxial growth,” Phys. Rev. B 42(2), 1364–1368 (1990).
    [Crossref]
  19. A. Kawano, I. Konomi, H. Azuma, T. Hioki, and S. Noda, “Influence of bismuth as a surfactant on the growth of germanium on silicon,” J. Appl. Phys. 74(6), 4265–4267 (1993).
    [Crossref]
  20. V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
    [Crossref]
  21. D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
    [Crossref]
  22. B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11(4), 221–226 (2000).
    [Crossref]
  23. M. R. Pillai, S.-S. Kim, S. T. Ho, and S. A. Barnett, “Growth of InxGa1−x As/GaAs heterostructures using Bi as a surfactant,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(3), 1232 (2000).
    [Crossref]
  24. E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
    [Crossref]
  25. P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
    [Crossref]
  26. E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279(3-4), 316–320 (2005).
    [Crossref]
  27. Y. Gu, Y. G. Zhang, X. Y. Chen, S. P. Xi, B. Du, and Y. J. Ma, “Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells,” Appl. Phys. Lett. 107(21), 212104 (2015).
    [Crossref]
  28. P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
    [Crossref]
  29. D. Kandel and E. Kaxiras, “The Surfactant Effect in Semiconductor Thin-Film Growth,” in H. Ehrenreich and F. Spaepen, eds., Solid State Physics (Academic Press, 2000), Vol. 54, pp. 219–262.
  30. J. Massies, N. Grandjean, and V. H. Etgens, “Surfactant mediated epitaxial growth of InxGa1−xAs on GaAs (001),” Appl. Phys. Lett. 61(1), 99–101 (1992).
    [Crossref]
  31. N. Grandjean, J. Massies, and V. H. Etgens, “Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers,” Phys. Rev. Lett. 69(5), 796–799 (1992).
    [Crossref]
  32. Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett. 100(11), 112110 (2012).
    [Crossref]
  33. G. Feng, K. Oe, and M. Yoshimoto, “Temperature dependence of Bi behavior in MBE growth of InGaAs/InP,” J. Cryst. Growth 301-302, 121–124 (2007).
    [Crossref]
  34. N. Grandjean, J. Massies, C. Delamarre, L. P. Wang, A. Dubon, and J. Y. Laval, “Improvement of the growth of InxGa1−xAs on GaAs (001) using Te as surfactant,” Appl. Phys. Lett. 63(1), 66–68 (1993).
    [Crossref]
  35. I. García, I. Rey-Stolle, B. Galiana, and C. Algora, “Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties,” J. Cryst. Growth 298, 794–799 (2007).
    [Crossref]
  36. T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
    [Crossref]
  37. T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
    [Crossref]
  38. S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
    [Crossref]
  39. A. J. Ptak, D. A. Beaton, and A. Mascarenhas, “Growth of BGaAs by molecular-beam epitaxy and the effects of a bismuth surfactant,” J. Cryst. Growth 351(1), 122–125 (2012).
    [Crossref]
  40. S. Tixier, M. Adamcyk, E. C. Young, J. H. Schmid, and T. Tiedje, “Surfactant enhanced growth of GaNAs and InGaNAs using bismuth,” J. Cryst. Growth 251(1-4), 449–454 (2003).
    [Crossref]
  41. A. J. Ptak, R. France, C.-S. Jiang, and R. C. Reedy, “Effects of bismuth on wide-depletion-width GaInNAs solar cells,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(3), 1053 (2008).
    [Crossref]
  42. E. F. Schubert, G. H. Gilmer, R. F. Kopf, and H. S. Luftman, “Maximum concentration of impurities in semiconductors,” Phys. Rev. B 46(23), 15078–15084 (1992).
    [Crossref]
  43. J. E. Northrup and S. B. Zhang, “Dopant and defect energetics: Si in GaAs,” Phys. Rev. B 47(11), 6791–6794 (1993).
    [Crossref]
  44. E. Tokumitsu, “Correlation between Fermi level stabilization positions and maximum free carrier concentrations in III-V compound semiconductors,” Jpn. J. Appl. Phys. 29(Part 2, No. 5), L698–L701 (1990).
    [Crossref]
  45. S. B. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review,” J. Phys.: Condens. Matter 14(34), R881–R903 (2002).
    [Crossref]
  46. S. Muto, S. Takeda, M. Hirata, K. Fujii, and K. Ibe, “Structure of planar aggregates of si in heavily si-doped gaas,” Philos. Mag. A 66(2), 257–268 (1992).
    [Crossref]
  47. C. Domke, P. Ebert, M. Heinrich, and K. Urban, “Microscopic identification of the compensation mechanisms in Si-doped GaAs,” Phys. Rev. B 54(15), 10288–10291 (1996).
    [Crossref]

2017 (2)

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial,” Sci. Rep. 7(1), 15312 (2017).
[Crossref]

K. Feng, G. Harden, D. L. Sivco, and A. J. Hoffman, “Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators,” ACS Photonics 4(7), 1621–1626 (2017).
[Crossref]

2016 (2)

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

D. Wei, C. Harris, C. C. Bomberger, J. Zhang, J. Zide, and S. Law, “Single-material semiconductor hyperbolic metamaterials,” Opt. Express 24(8), 8735–8745 (2016).
[Crossref]

2015 (2)

Y. Gu, Y. G. Zhang, X. Y. Chen, S. P. Xi, B. Du, and Y. J. Ma, “Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells,” Appl. Phys. Lett. 107(21), 212104 (2015).
[Crossref]

T. Taliercio, V. N. Guilengui, L. Cerutti, J.-B. Rodriguez, F. Barho, M.-J. M. Rodrigo, F. Gonzalez-Posada, E. Tournié, M. Niehle, and A. Trampert, “Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix,” Opt. Express 23(23), 29423 (2015).
[Crossref]

2014 (6)

T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–303 (2014).
[Crossref]

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(5), 052601 (2014).
[Crossref]

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
[Crossref]

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

2013 (4)

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 31(3), 03C121 (2013).
[Crossref]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

2012 (5)

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref]

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett. 100(11), 112110 (2012).
[Crossref]

A. J. Ptak, D. A. Beaton, and A. Mascarenhas, “Growth of BGaAs by molecular-beam epitaxy and the effects of a bismuth surfactant,” J. Cryst. Growth 351(1), 122–125 (2012).
[Crossref]

2011 (1)

2008 (1)

A. J. Ptak, R. France, C.-S. Jiang, and R. C. Reedy, “Effects of bismuth on wide-depletion-width GaInNAs solar cells,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(3), 1053 (2008).
[Crossref]

2007 (3)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

G. Feng, K. Oe, and M. Yoshimoto, “Temperature dependence of Bi behavior in MBE growth of InGaAs/InP,” J. Cryst. Growth 301-302, 121–124 (2007).
[Crossref]

I. García, I. Rey-Stolle, B. Galiana, and C. Algora, “Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties,” J. Cryst. Growth 298, 794–799 (2007).
[Crossref]

2006 (1)

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

2005 (2)

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279(3-4), 316–320 (2005).
[Crossref]

2004 (1)

T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
[Crossref]

2003 (1)

S. Tixier, M. Adamcyk, E. C. Young, J. H. Schmid, and T. Tiedje, “Surfactant enhanced growth of GaNAs and InGaNAs using bismuth,” J. Cryst. Growth 251(1-4), 449–454 (2003).
[Crossref]

2002 (1)

S. B. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review,” J. Phys.: Condens. Matter 14(34), R881–R903 (2002).
[Crossref]

2000 (2)

B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11(4), 221–226 (2000).
[Crossref]

M. R. Pillai, S.-S. Kim, S. T. Ho, and S. A. Barnett, “Growth of InxGa1−x As/GaAs heterostructures using Bi as a surfactant,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(3), 1232 (2000).
[Crossref]

1996 (2)

H. Yamaguchi and Y. Horikoshi, “Surface-defect formation on heavily doped InAs and GaAs layers studied by scanning tunneling microscopy,” Phys. Rev. B 53(8), 4565–4569 (1996).
[Crossref]

C. Domke, P. Ebert, M. Heinrich, and K. Urban, “Microscopic identification of the compensation mechanisms in Si-doped GaAs,” Phys. Rev. B 54(15), 10288–10291 (1996).
[Crossref]

1993 (3)

J. E. Northrup and S. B. Zhang, “Dopant and defect energetics: Si in GaAs,” Phys. Rev. B 47(11), 6791–6794 (1993).
[Crossref]

A. Kawano, I. Konomi, H. Azuma, T. Hioki, and S. Noda, “Influence of bismuth as a surfactant on the growth of germanium on silicon,” J. Appl. Phys. 74(6), 4265–4267 (1993).
[Crossref]

N. Grandjean, J. Massies, C. Delamarre, L. P. Wang, A. Dubon, and J. Y. Laval, “Improvement of the growth of InxGa1−xAs on GaAs (001) using Te as surfactant,” Appl. Phys. Lett. 63(1), 66–68 (1993).
[Crossref]

1992 (5)

J. Massies, N. Grandjean, and V. H. Etgens, “Surfactant mediated epitaxial growth of InxGa1−xAs on GaAs (001),” Appl. Phys. Lett. 61(1), 99–101 (1992).
[Crossref]

N. Grandjean, J. Massies, and V. H. Etgens, “Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers,” Phys. Rev. Lett. 69(5), 796–799 (1992).
[Crossref]

Y. S. Fatt, “Evidence of silicon segregation as a function of arsenic overpressure in GaAs grown by molecular beam epitaxy,” J. Appl. Phys. 72(7), 2846–2849 (1992).
[Crossref]

E. F. Schubert, G. H. Gilmer, R. F. Kopf, and H. S. Luftman, “Maximum concentration of impurities in semiconductors,” Phys. Rev. B 46(23), 15078–15084 (1992).
[Crossref]

S. Muto, S. Takeda, M. Hirata, K. Fujii, and K. Ibe, “Structure of planar aggregates of si in heavily si-doped gaas,” Philos. Mag. A 66(2), 257–268 (1992).
[Crossref]

1990 (2)

E. Tokumitsu, “Correlation between Fermi level stabilization positions and maximum free carrier concentrations in III-V compound semiconductors,” Jpn. J. Appl. Phys. 29(Part 2, No. 5), L698–L701 (1990).
[Crossref]

E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman, and L. C. Hopkins, “Fermi-level-pinning-induced impurity redistribution in semiconductors during epitaxial growth,” Phys. Rev. B 42(2), 1364–1368 (1990).
[Crossref]

Adamcyk, M.

S. Tixier, M. Adamcyk, E. C. Young, J. H. Schmid, and T. Tiedje, “Surfactant enhanced growth of GaNAs and InGaNAs using bismuth,” J. Cryst. Growth 251(1-4), 449–454 (2003).
[Crossref]

Adams, D. C.

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Algora, C.

I. García, I. Rey-Stolle, B. Galiana, and C. Algora, “Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties,” J. Cryst. Growth 298, 794–799 (2007).
[Crossref]

Anderson, E. M.

E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
[Crossref]

Attia, P.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

Averitt, R. D.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

Azuma, H.

A. Kawano, I. Konomi, H. Azuma, T. Hioki, and S. Noda, “Influence of bismuth as a surfactant on the growth of germanium on silicon,” J. Appl. Phys. 74(6), 4265–4267 (1993).
[Crossref]

Baidus, N. V.

B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11(4), 221–226 (2000).
[Crossref]

Balakrishnan, G.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Bank, S. R.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

Barho, F.

Barnett, S. A.

M. R. Pillai, S.-S. Kim, S. T. Ho, and S. A. Barnett, “Growth of InxGa1−x As/GaAs heterostructures using Bi as a surfactant,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(3), 1232 (2000).
[Crossref]

Basov, D. N.

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

Beaton, D. A.

A. J. Ptak, D. A. Beaton, and A. Mascarenhas, “Growth of BGaAs by molecular-beam epitaxy and the effects of a bismuth surfactant,” J. Cryst. Growth 351(1), 122–125 (2012).
[Crossref]

Bomberger, C.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

Bomberger, C. C.

Carrington, P. J.

E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
[Crossref]

Cerutti, L.

Cheaito, R.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

Chen, X. Y.

Y. Gu, Y. G. Zhang, X. Y. Chen, S. P. Xi, B. Du, and Y. J. Ma, “Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells,” Appl. Phys. Lett. 107(21), 212104 (2015).
[Crossref]

Dasika, V. D.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

Dawson, L. R.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Delamarre, C.

N. Grandjean, J. Massies, C. Delamarre, L. P. Wang, A. Dubon, and J. Y. Laval, “Improvement of the growth of InxGa1−xAs on GaAs (001) using Te as surfactant,” Appl. Phys. Lett. 63(1), 66–68 (1993).
[Crossref]

Desouky, M.

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial,” Sci. Rep. 7(1), 15312 (2017).
[Crossref]

Domke, C.

C. Domke, P. Ebert, M. Heinrich, and K. Urban, “Microscopic identification of the compensation mechanisms in Si-doped GaAs,” Phys. Rev. B 54(15), 10288–10291 (1996).
[Crossref]

Dongmo, P.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

Dongmo, P. B.

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett. 100(11), 112110 (2012).
[Crossref]

Dorogan, V. G.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Du, B.

Y. Gu, Y. G. Zhang, X. Y. Chen, S. P. Xi, B. Du, and Y. J. Ma, “Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells,” Appl. Phys. Lett. 107(21), 212104 (2015).
[Crossref]

Dubon, A.

N. Grandjean, J. Massies, C. Delamarre, L. P. Wang, A. Dubon, and J. Y. Laval, “Improvement of the growth of InxGa1−xAs on GaAs (001) using Te as surfactant,” Appl. Phys. Lett. 63(1), 66–68 (1993).
[Crossref]

Ebert, P.

C. Domke, P. Ebert, M. Heinrich, and K. Urban, “Microscopic identification of the compensation mechanisms in Si-doped GaAs,” Phys. Rev. B 54(15), 10288–10291 (1996).
[Crossref]

Etgens, V. H.

N. Grandjean, J. Massies, and V. H. Etgens, “Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers,” Phys. Rev. Lett. 69(5), 796–799 (1992).
[Crossref]

J. Massies, N. Grandjean, and V. H. Etgens, “Surfactant mediated epitaxial growth of InxGa1−xAs on GaAs (001),” Appl. Phys. Lett. 61(1), 99–101 (1992).
[Crossref]

Fan, D.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Fan, K.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Fatt, Y. S.

Y. S. Fatt, “Evidence of silicon segregation as a function of arsenic overpressure in GaAs grown by molecular beam epitaxy,” J. Appl. Phys. 72(7), 2846–2849 (1992).
[Crossref]

Fei, Z.

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

Feng, G.

G. Feng, K. Oe, and M. Yoshimoto, “Temperature dependence of Bi behavior in MBE growth of InGaAs/InP,” J. Cryst. Growth 301-302, 121–124 (2007).
[Crossref]

Feng, K.

K. Feng, G. Harden, D. L. Sivco, and A. J. Hoffman, “Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators,” ACS Photonics 4(7), 1621–1626 (2017).
[Crossref]

Filatov, D. O.

B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11(4), 221–226 (2000).
[Crossref]

Fogler, M. M.

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

France, R.

A. J. Ptak, R. France, C.-S. Jiang, and R. C. Reedy, “Effects of bismuth on wide-depletion-width GaInNAs solar cells,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(3), 1053 (2008).
[Crossref]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Fujii, K.

S. Muto, S. Takeda, M. Hirata, K. Fujii, and K. Ibe, “Structure of planar aggregates of si in heavily si-doped gaas,” Philos. Mag. A 66(2), 257–268 (1992).
[Crossref]

Furuhata, T.

T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
[Crossref]

Galiana, B.

I. García, I. Rey-Stolle, B. Galiana, and C. Algora, “Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties,” J. Cryst. Growth 298, 794–799 (2007).
[Crossref]

García, I.

I. García, I. Rey-Stolle, B. Galiana, and C. Algora, “Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties,” J. Cryst. Growth 298, 794–799 (2007).
[Crossref]

Gilmer, G. H.

E. F. Schubert, G. H. Gilmer, R. F. Kopf, and H. S. Luftman, “Maximum concentration of impurities in semiconductors,” Phys. Rev. B 46(23), 15078–15084 (1992).
[Crossref]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Gogineni, C.

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

Gonzalez-Posada, F.

Grandjean, N.

N. Grandjean, J. Massies, C. Delamarre, L. P. Wang, A. Dubon, and J. Y. Laval, “Improvement of the growth of InxGa1−xAs on GaAs (001) using Te as surfactant,” Appl. Phys. Lett. 63(1), 66–68 (1993).
[Crossref]

N. Grandjean, J. Massies, and V. H. Etgens, “Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers,” Phys. Rev. Lett. 69(5), 796–799 (1992).
[Crossref]

J. Massies, N. Grandjean, and V. H. Etgens, “Surfactant mediated epitaxial growth of InxGa1−xAs on GaAs (001),” Appl. Phys. Lett. 61(1), 99–101 (1992).
[Crossref]

Greffet, J.-J.

Gu, Y.

Y. Gu, Y. G. Zhang, X. Y. Chen, S. P. Xi, B. Du, and Y. J. Ma, “Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells,” Appl. Phys. Lett. 107(21), 212104 (2015).
[Crossref]

Guilengui, V. N.

Gushina, Y. Y.

B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11(4), 221–226 (2000).
[Crossref]

Harden, G.

K. Feng, G. Harden, D. L. Sivco, and A. J. Hoffman, “Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators,” ACS Photonics 4(7), 1621–1626 (2017).
[Crossref]

Harris, C.

Heinrich, M.

C. Domke, P. Ebert, M. Heinrich, and K. Urban, “Microscopic identification of the compensation mechanisms in Si-doped GaAs,” Phys. Rev. B 54(15), 10288–10291 (1996).
[Crossref]

Hioki, T.

A. Kawano, I. Konomi, H. Azuma, T. Hioki, and S. Noda, “Influence of bismuth as a surfactant on the growth of germanium on silicon,” J. Appl. Phys. 74(6), 4265–4267 (1993).
[Crossref]

Hirata, M.

S. Muto, S. Takeda, M. Hirata, K. Fujii, and K. Ibe, “Structure of planar aggregates of si in heavily si-doped gaas,” Philos. Mag. A 66(2), 257–268 (1992).
[Crossref]

Hirono, Y.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Ho, S. T.

M. R. Pillai, S.-S. Kim, S. T. Ho, and S. A. Barnett, “Growth of InxGa1−x As/GaAs heterostructures using Bi as a surfactant,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(3), 1232 (2000).
[Crossref]

Hoffman, A. J.

K. Feng, G. Harden, D. L. Sivco, and A. J. Hoffman, “Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators,” ACS Photonics 4(7), 1621–1626 (2017).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Hopkins, L. C.

E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman, and L. C. Hopkins, “Fermi-level-pinning-induced impurity redistribution in semiconductors during epitaxial growth,” Phys. Rev. B 42(2), 1364–1368 (1990).
[Crossref]

Hopkins, P. E.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

Horikoshi, Y.

H. Yamaguchi and Y. Horikoshi, “Surface-defect formation on heavily doped InAs and GaAs layers studied by scanning tunneling microscopy,” Phys. Rev. B 53(8), 4565–4569 (1996).
[Crossref]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Huang, S. H.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Huffaker, D. L.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Ibe, K.

S. Muto, S. Takeda, M. Hirata, K. Fujii, and K. Ibe, “Structure of planar aggregates of si in heavily si-doped gaas,” Philos. Mag. A 66(2), 257–268 (1992).
[Crossref]

Ihlefeld, J. F.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

Jallipalli, A.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Jiang, C.-S.

A. J. Ptak, R. France, C.-S. Jiang, and R. C. Reedy, “Effects of bismuth on wide-depletion-width GaInNAs solar cells,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(3), 1053 (2008).
[Crossref]

Johnson, S. R.

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Jordan, A. S.

E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman, and L. C. Hopkins, “Fermi-level-pinning-induced impurity redistribution in semiconductors during epitaxial growth,” Phys. Rev. B 42(2), 1364–1368 (1990).
[Crossref]

Jung, D.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

Kageyama, T.

T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
[Crossref]

Kandel, D.

D. Kandel and E. Kaxiras, “The Surfactant Effect in Semiconductor Thin-Film Growth,” in H. Ehrenreich and F. Spaepen, eds., Solid State Physics (Academic Press, 2000), Vol. 54, pp. 219–262.

Karpovich, I. A.

B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11(4), 221–226 (2000).
[Crossref]

Kawano, A.

A. Kawano, I. Konomi, H. Azuma, T. Hioki, and S. Noda, “Influence of bismuth as a surfactant on the growth of germanium on silicon,” J. Appl. Phys. 74(6), 4265–4267 (1993).
[Crossref]

Kaxiras, E.

D. Kandel and E. Kaxiras, “The Surfactant Effect in Semiconductor Thin-Film Growth,” in H. Ehrenreich and F. Spaepen, eds., Solid State Physics (Academic Press, 2000), Vol. 54, pp. 219–262.

Keilmann, F.

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

Keiser, G. R.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Khoshakhlagh, A.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Kim, S.-S.

M. R. Pillai, S.-S. Kim, S. T. Ho, and S. A. Barnett, “Growth of InxGa1−x As/GaAs heterostructures using Bi as a surfactant,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(3), 1232 (2000).
[Crossref]

Kondo, Y.

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

Konomi, I.

A. Kawano, I. Konomi, H. Azuma, T. Hioki, and S. Noda, “Influence of bismuth as a surfactant on the growth of germanium on silicon,” J. Appl. Phys. 74(6), 4265–4267 (1993).
[Crossref]

Kopf, R. F.

E. F. Schubert, G. H. Gilmer, R. F. Kopf, and H. S. Luftman, “Maximum concentration of impurities in semiconductors,” Phys. Rev. B 46(23), 15078–15084 (1992).
[Crossref]

E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman, and L. C. Hopkins, “Fermi-level-pinning-induced impurity redistribution in semiconductors during epitaxial growth,” Phys. Rev. B 42(2), 1364–1368 (1990).
[Crossref]

Koyama, F.

T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
[Crossref]

Krivoy, E. M.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

Kuo, J. M.

E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman, and L. C. Hopkins, “Fermi-level-pinning-induced impurity redistribution in semiconductors during epitaxial growth,” Phys. Rev. B 42(2), 1364–1368 (1990).
[Crossref]

Laval, J. Y.

N. Grandjean, J. Massies, C. Delamarre, L. P. Wang, A. Dubon, and J. Y. Laval, “Improvement of the growth of InxGa1−xAs on GaAs (001) using Te as surfactant,” Appl. Phys. Lett. 63(1), 66–68 (1993).
[Crossref]

Law, S.

D. Wei, C. Harris, C. C. Bomberger, J. Zhang, J. Zide, and S. Law, “Single-material semiconductor hyperbolic metamaterials,” Opt. Express 24(8), 8735–8745 (2016).
[Crossref]

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(5), 052601 (2014).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 31(3), 03C121 (2013).
[Crossref]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref]

Lee, M. L.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

Li, C.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Li, D.

Liu, M.

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

Liu, R.

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(5), 052601 (2014).
[Crossref]

Liu, S.

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

Lu, J.

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

Luftman, H. S.

E. F. Schubert, G. H. Gilmer, R. F. Kopf, and H. S. Luftman, “Maximum concentration of impurities in semiconductors,” Phys. Rev. B 46(23), 15078–15084 (1992).
[Crossref]

E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman, and L. C. Hopkins, “Fermi-level-pinning-induced impurity redistribution in semiconductors during epitaxial growth,” Phys. Rev. B 42(2), 1364–1368 (1990).
[Crossref]

Lundquist, A. M.

E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
[Crossref]

Ma, Y. J.

Y. Gu, Y. G. Zhang, X. Y. Chen, S. P. Xi, B. Du, and Y. J. Ma, “Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells,” Appl. Phys. Lett. 107(21), 212104 (2015).
[Crossref]

Maddox, S. J.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

Mahmoud, A. M.

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial,” Sci. Rep. 7(1), 15312 (2017).
[Crossref]

Mascarenhas, A.

A. J. Ptak, D. A. Beaton, and A. Mascarenhas, “Growth of BGaAs by molecular-beam epitaxy and the effects of a bismuth surfactant,” J. Cryst. Growth 351(1), 122–125 (2012).
[Crossref]

Massies, J.

N. Grandjean, J. Massies, C. Delamarre, L. P. Wang, A. Dubon, and J. Y. Laval, “Improvement of the growth of InxGa1−xAs on GaAs (001) using Te as surfactant,” Appl. Phys. Lett. 63(1), 66–68 (1993).
[Crossref]

J. Massies, N. Grandjean, and V. H. Etgens, “Surfactant mediated epitaxial growth of InxGa1−xAs on GaAs (001),” Appl. Phys. Lett. 61(1), 99–101 (1992).
[Crossref]

N. Grandjean, J. Massies, and V. H. Etgens, “Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers,” Phys. Rev. Lett. 69(5), 796–799 (1992).
[Crossref]

Matsui, Y.

T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
[Crossref]

Matsuura, T.

T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
[Crossref]

Mazur, Y. I.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Mcleod, A. S.

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

Millunchick, J. M.

E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
[Crossref]

Mitsuhara, M.

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

Miyamoto, T.

T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
[Crossref]

Morozov, S. V.

B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11(4), 221–226 (2000).
[Crossref]

Muto, S.

S. Muto, S. Takeda, M. Hirata, K. Fujii, and K. Ibe, “Structure of planar aggregates of si in heavily si-doped gaas,” Philos. Mag. A 66(2), 257–268 (1992).
[Crossref]

Nair, H. P.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Niehle, M.

Ning, C. Z.

Noda, S.

A. Kawano, I. Konomi, H. Azuma, T. Hioki, and S. Noda, “Influence of bismuth as a surfactant on the growth of germanium on silicon,” J. Appl. Phys. 74(6), 4265–4267 (1993).
[Crossref]

Northrup, J. E.

J. E. Northrup and S. B. Zhang, “Dopant and defect energetics: Si in GaAs,” Phys. Rev. B 47(11), 6791–6794 (1993).
[Crossref]

Oe, K.

G. Feng, K. Oe, and M. Yoshimoto, “Temperature dependence of Bi behavior in MBE growth of InGaAs/InP,” J. Cryst. Growth 301-302, 121–124 (2007).
[Crossref]

Ohta, M.

T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
[Crossref]

Park, K. W.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

Pearson, C.

E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
[Crossref]

Petropoulos, J. P.

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett. 100(11), 112110 (2012).
[Crossref]

Pillai, M. R.

M. R. Pillai, S.-S. Kim, S. T. Ho, and S. A. Barnett, “Growth of InxGa1−x As/GaAs heterostructures using Bi as a surfactant,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(3), 1232 (2000).
[Crossref]

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Ptak, A. J.

A. J. Ptak, D. A. Beaton, and A. Mascarenhas, “Growth of BGaAs by molecular-beam epitaxy and the effects of a bismuth surfactant,” J. Cryst. Growth 351(1), 122–125 (2012).
[Crossref]

A. J. Ptak, R. France, C.-S. Jiang, and R. C. Reedy, “Effects of bismuth on wide-depletion-width GaInNAs solar cells,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(3), 1053 (2008).
[Crossref]

Reedy, R. C.

A. J. Ptak, R. France, C.-S. Jiang, and R. C. Reedy, “Effects of bismuth on wide-depletion-width GaInNAs solar cells,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(3), 1053 (2008).
[Crossref]

Rey-Stolle, I.

I. García, I. Rey-Stolle, B. Galiana, and C. Algora, “Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties,” J. Cryst. Growth 298, 794–799 (2007).
[Crossref]

Riordan, N. A.

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

Rodrigo, M.-J. M.

Rodriguez, J. B.

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Rodriguez, J.-B.

Rosenberg, A.

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref]

Salamo, G. J.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Sarney, W. L.

E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
[Crossref]

Sato, T.

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

Schmid, J. H.

S. Tixier, M. Adamcyk, E. C. Young, J. H. Schmid, and T. Tiedje, “Surfactant enhanced growth of GaNAs and InGaNAs using bismuth,” J. Cryst. Growth 251(1-4), 449–454 (2003).
[Crossref]

Schubert, E. F.

E. F. Schubert, G. H. Gilmer, R. F. Kopf, and H. S. Luftman, “Maximum concentration of impurities in semiconductors,” Phys. Rev. B 46(23), 15078–15084 (1992).
[Crossref]

E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman, and L. C. Hopkins, “Fermi-level-pinning-induced impurity redistribution in semiconductors during epitaxial growth,” Phys. Rev. B 42(2), 1364–1368 (1990).
[Crossref]

Seren, H. R.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Sivco, D. L.

K. Feng, G. Harden, D. L. Sivco, and A. J. Hoffman, “Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators,” ACS Photonics 4(7), 1621–1626 (2017).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Smith, D. J.

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

Svensson, S. P.

E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
[Crossref]

Swillam, M. A.

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial,” Sci. Rep. 7(1), 15312 (2017).
[Crossref]

Takeda, S.

S. Muto, S. Takeda, M. Hirata, K. Fujii, and K. Ibe, “Structure of planar aggregates of si in heavily si-doped gaas,” Philos. Mag. A 66(2), 257–268 (1992).
[Crossref]

Taliercio, T.

Taylor, A. M.

Tiedje, T.

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279(3-4), 316–320 (2005).
[Crossref]

S. Tixier, M. Adamcyk, E. C. Young, J. H. Schmid, and T. Tiedje, “Surfactant enhanced growth of GaNAs and InGaNAs using bismuth,” J. Cryst. Growth 251(1-4), 449–454 (2003).
[Crossref]

Tixier, S.

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279(3-4), 316–320 (2005).
[Crossref]

S. Tixier, M. Adamcyk, E. C. Young, J. H. Schmid, and T. Tiedje, “Surfactant enhanced growth of GaNAs and InGaNAs using bismuth,” J. Cryst. Growth 251(1-4), 449–454 (2003).
[Crossref]

Tokumitsu, E.

E. Tokumitsu, “Correlation between Fermi level stabilization positions and maximum free carrier concentrations in III-V compound semiconductors,” Jpn. J. Appl. Phys. 29(Part 2, No. 5), L698–L701 (1990).
[Crossref]

Tournie, E.

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Tournié, E.

Trampert, A.

Urban, K.

C. Domke, P. Ebert, M. Heinrich, and K. Urban, “Microscopic identification of the compensation mechanisms in Si-doped GaAs,” Phys. Rev. B 54(15), 10288–10291 (1996).
[Crossref]

Wagner, M.

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

Wang, L. P.

N. Grandjean, J. Massies, C. Delamarre, L. P. Wang, A. Dubon, and J. Y. Laval, “Improvement of the growth of InxGa1−xAs on GaAs (001) using Te as surfactant,” Appl. Phys. Lett. 63(1), 66–68 (1993).
[Crossref]

Wang, Z. M.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Wasserman, D.

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(5), 052601 (2014).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref]

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 31(3), 03C121 (2013).
[Crossref]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Watanabe, T.

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

Webster, P. T.

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

Wei, D.

Xi, S. P.

Y. Gu, Y. G. Zhang, X. Y. Chen, S. P. Xi, B. Du, and Y. J. Ma, “Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells,” Appl. Phys. Lett. 107(21), 212104 (2015).
[Crossref]

Yamaguchi, H.

H. Yamaguchi and Y. Horikoshi, “Surface-defect formation on heavily doped InAs and GaAs layers studied by scanning tunneling microscopy,” Phys. Rev. B 53(8), 4565–4569 (1996).
[Crossref]

Yoshimoto, M.

G. Feng, K. Oe, and M. Yoshimoto, “Temperature dependence of Bi behavior in MBE growth of InGaAs/InP,” J. Cryst. Growth 301-302, 121–124 (2007).
[Crossref]

Young, E. C.

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279(3-4), 316–320 (2005).
[Crossref]

S. Tixier, M. Adamcyk, E. C. Young, J. H. Schmid, and T. Tiedje, “Surfactant enhanced growth of GaNAs and InGaNAs using bismuth,” J. Cryst. Growth 251(1-4), 449–454 (2003).
[Crossref]

Yu, E. T.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

Yu, L.

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref]

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 31(3), 03C121 (2013).
[Crossref]

Yu, S.-Q.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Zeng, Z.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

Zhang, J.

D. Wei, C. Harris, C. C. Bomberger, J. Zhang, J. Zide, and S. Law, “Single-material semiconductor hyperbolic metamaterials,” Opt. Express 24(8), 8735–8745 (2016).
[Crossref]

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Zhang, S. B.

S. B. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review,” J. Phys.: Condens. Matter 14(34), R881–R903 (2002).
[Crossref]

J. E. Northrup and S. B. Zhang, “Dopant and defect energetics: Si in GaAs,” Phys. Rev. B 47(11), 6791–6794 (1993).
[Crossref]

Zhang, X.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Zhang, Y. G.

Y. Gu, Y. G. Zhang, X. Y. Chen, S. P. Xi, B. Du, and Y. J. Ma, “Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells,” Appl. Phys. Lett. 107(21), 212104 (2015).
[Crossref]

Zhang, Y.-H.

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

Zhao, X.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Zhao, X.-H.

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

Zhong, Y.

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett. 100(11), 112110 (2012).
[Crossref]

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

Zide, J.

D. Wei, C. Harris, C. C. Bomberger, J. Zhang, J. Zide, and S. Law, “Single-material semiconductor hyperbolic metamaterials,” Opt. Express 24(8), 8735–8745 (2016).
[Crossref]

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

Zide, J. M. O.

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett. 100(11), 112110 (2012).
[Crossref]

Zvonkov, B. N.

B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11(4), 221–226 (2000).
[Crossref]

ACS Photonics (1)

K. Feng, G. Harden, D. L. Sivco, and A. J. Hoffman, “Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators,” ACS Photonics 4(7), 1621–1626 (2017).
[Crossref]

Appl. Phys. Lett. (8)

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

N. Grandjean, J. Massies, C. Delamarre, L. P. Wang, A. Dubon, and J. Y. Laval, “Improvement of the growth of InxGa1−xAs on GaAs (001) using Te as surfactant,” Appl. Phys. Lett. 63(1), 66–68 (1993).
[Crossref]

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105(25), 253104 (2014).
[Crossref]

Y. Gu, Y. G. Zhang, X. Y. Chen, S. P. Xi, B. Du, and Y. J. Ma, “Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells,” Appl. Phys. Lett. 107(21), 212104 (2015).
[Crossref]

J. Massies, N. Grandjean, and V. H. Etgens, “Surfactant mediated epitaxial growth of InxGa1−xAs on GaAs (001),” Appl. Phys. Lett. 61(1), 99–101 (1992).
[Crossref]

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett. 100(11), 112110 (2012).
[Crossref]

V. N. Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

J. Appl. Phys. (5)

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys. 112(9), 093710 (2012).
[Crossref]

E. M. Anderson, A. M. Lundquist, W. L. Sarney, S. P. Svensson, P. J. Carrington, C. Pearson, and J. M. Millunchick, “Influence of a Bi surfactant on Sb incorporation in InAsSb alloys,” J. Appl. Phys. 116(1), 014901 (2014).
[Crossref]

Y. S. Fatt, “Evidence of silicon segregation as a function of arsenic overpressure in GaAs grown by molecular beam epitaxy,” J. Appl. Phys. 72(7), 2846–2849 (1992).
[Crossref]

A. Kawano, I. Konomi, H. Azuma, T. Hioki, and S. Noda, “Influence of bismuth as a surfactant on the growth of germanium on silicon,” J. Appl. Phys. 74(6), 4265–4267 (1993).
[Crossref]

T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy,” J. Appl. Phys. 96(1), 44–48 (2004).
[Crossref]

J. Cryst. Growth (5)

I. García, I. Rey-Stolle, B. Galiana, and C. Algora, “Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties,” J. Cryst. Growth 298, 794–799 (2007).
[Crossref]

A. J. Ptak, D. A. Beaton, and A. Mascarenhas, “Growth of BGaAs by molecular-beam epitaxy and the effects of a bismuth surfactant,” J. Cryst. Growth 351(1), 122–125 (2012).
[Crossref]

S. Tixier, M. Adamcyk, E. C. Young, J. H. Schmid, and T. Tiedje, “Surfactant enhanced growth of GaNAs and InGaNAs using bismuth,” J. Cryst. Growth 251(1-4), 449–454 (2003).
[Crossref]

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279(3-4), 316–320 (2005).
[Crossref]

G. Feng, K. Oe, and M. Yoshimoto, “Temperature dependence of Bi behavior in MBE growth of InGaAs/InP,” J. Cryst. Growth 301-302, 121–124 (2007).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci.: Mater. Electron. 24(5), 1635–1639 (2013).
[Crossref]

J. Phys.: Condens. Matter (1)

S. B. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review,” J. Phys.: Condens. Matter 14(34), R881–R903 (2002).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. (1)

A. J. Ptak, R. France, C.-S. Jiang, and R. C. Reedy, “Effects of bismuth on wide-depletion-width GaInNAs solar cells,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(3), 1053 (2008).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. (1)

M. R. Pillai, S.-S. Kim, S. T. Ho, and S. A. Barnett, “Growth of InxGa1−x As/GaAs heterostructures using Bi as a surfactant,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(3), 1232 (2000).
[Crossref]

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. (3)

P. T. Webster, N. A. Riordan, C. Gogineni, S. Liu, J. Lu, X.-H. Zhao, D. J. Smith, Y.-H. Zhang, and S. R. Johnson, “Molecular beam epitaxy using bismuth as a constituent in InAs and a surfactant in InAs/InAsSb superlattices,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(2), 02C120 (2014).
[Crossref]

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32(5), 052601 (2014).
[Crossref]

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 31(3), 03C121 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

E. Tokumitsu, “Correlation between Fermi level stabilization positions and maximum free carrier concentrations in III-V compound semiconductors,” Jpn. J. Appl. Phys. 29(Part 2, No. 5), L698–L701 (1990).
[Crossref]

Light: Sci. Appl. (1)

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light: Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Nano Lett. (2)

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref]

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, M. M. Fogler, S. R. Bank, F. Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Lett. 14(8), 4529–4534 (2014).
[Crossref]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Nanotechnology (1)

B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11(4), 221–226 (2000).
[Crossref]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref]

Opt. Express (5)

Philos. Mag. A (1)

S. Muto, S. Takeda, M. Hirata, K. Fujii, and K. Ibe, “Structure of planar aggregates of si in heavily si-doped gaas,” Philos. Mag. A 66(2), 257–268 (1992).
[Crossref]

Phys. Rev. B (5)

C. Domke, P. Ebert, M. Heinrich, and K. Urban, “Microscopic identification of the compensation mechanisms in Si-doped GaAs,” Phys. Rev. B 54(15), 10288–10291 (1996).
[Crossref]

E. F. Schubert, G. H. Gilmer, R. F. Kopf, and H. S. Luftman, “Maximum concentration of impurities in semiconductors,” Phys. Rev. B 46(23), 15078–15084 (1992).
[Crossref]

J. E. Northrup and S. B. Zhang, “Dopant and defect energetics: Si in GaAs,” Phys. Rev. B 47(11), 6791–6794 (1993).
[Crossref]

H. Yamaguchi and Y. Horikoshi, “Surface-defect formation on heavily doped InAs and GaAs layers studied by scanning tunneling microscopy,” Phys. Rev. B 53(8), 4565–4569 (1996).
[Crossref]

E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman, and L. C. Hopkins, “Fermi-level-pinning-induced impurity redistribution in semiconductors during epitaxial growth,” Phys. Rev. B 42(2), 1364–1368 (1990).
[Crossref]

Phys. Rev. Lett. (1)

N. Grandjean, J. Massies, and V. H. Etgens, “Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers,” Phys. Rev. Lett. 69(5), 796–799 (1992).
[Crossref]

Sci. Rep. (1)

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial,” Sci. Rep. 7(1), 15312 (2017).
[Crossref]

Other (1)

D. Kandel and E. Kaxiras, “The Surfactant Effect in Semiconductor Thin-Film Growth,” in H. Ehrenreich and F. Spaepen, eds., Solid State Physics (Academic Press, 2000), Vol. 54, pp. 219–262.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Film surface quality as a function of growth rate and silicon concentration for films grown with a bismuth surfactant (blue squares and purple crosses) and without (green diamonds and red plusses). Films either show a specular surface (green diamonds and blue squares) or a diffuse surface (red plusses and purple crosses).
Fig. 2.
Fig. 2. Carrier density (a) and mobility (b) as determined by Hall measurements and plasma wavelength (c) and scattering rate (d) as determined by optical measurements as a function of substrate temperature for samples grown with no bismuth (red square), 1% bismuth (orange circle), 2% bismuth (green up triangle), 3% bismuth (blue down triangle), and 4% bismuth (purple diamond). Filled symbols indicate samples with a specular surface; open symbols indicate a diffuse surface. Dotted line in (a) indicates the nominal flux of silicon atoms.
Fig. 3.
Fig. 3. Optical microscope images for samples grown at 450C with bismuth fluxes of 0% (a) and 1% (b). Insets show corresponding scanning electron microscope images. Rectangular trenches are observed in (a), while (b) is featureless.
Fig. 4.
Fig. 4. Atomic force microscope images for samples grown at 450C with bismuth fluxes of 0% (a) and 1% (b). Note the difference in scale. (c) RMS roughness as a function of growth temperature for samples grown with a bismuth flux of 2%; surface roughness increases above ∼500C. (d) RMS roughness as a function of bismuth flux for samples grown at 450C (black squares) and 550C (red circles).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε S i : I n A s = ε s ( 1 ω p 2 ω 2 + i ω Γ )

Metrics