Abstract

An active terahertz (THz) anisotropic manipulation is based on a structure combined polymer dispersed liquid crystal (PDLC) with sub-wavelength dielectric gradient grating. In this structure, the PDLC works as an adjustable anisotropic material due to the change of the optical axis direction induced by applying a biased electric field, while the dielectric grating serves as an artificial high birefringence material. By using an appropriate design, the THz birefringence of this structure can be enhanced or offset under different biased voltages, and the phase shift curve of this structure becomes flatter than that of the pure PDLC cell due to the dispersion manipulation of the grating. Moreover, the experimental results fit with the simulative designing, demonstrating that the phase shift of the structure can vary from π to 0 near 0.8 THz when the electric field increases from 0 to 80V, and this device realizes the function of polarization conversion as a tunable THz half-wave plate. This work exhibits potential applications in THz functional devices, such as actively controlled phase shifters and polarization convertors combined LC with artificial microstructure.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice

Yun-Yun Ji, Fei Fan, Meng Chen, Lei Yang, and Sheng-Jiang Chang
Opt. Express 25(10) 11405-11413 (2017)

Subwavelength liquid crystal gratings for polarization-independent phase shifts in the terahertz spectral range

Tomoyuki Sasaki, Takuya Asano, Moritsugu Sakamoto, Kohei Noda, Takeya Unuma, Kohei Goto, Kimiaki Tsutsui, Nobuhiro Kawatsuki, and Hiroshi Ono
Opt. Mater. Express 10(2) 240-248 (2020)

Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field

Jian-Ping Yu, Sai Chen, Fei Fan, Jie-Rong Cheng, Shi-Tong Xu, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 26(2) 663-673 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
    [Crossref]
  2. S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
    [Crossref]
  3. Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
    [Crossref]
  4. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
    [Crossref]
  5. T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
    [Crossref]
  6. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  7. T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
    [Crossref]
  8. D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
    [Crossref]
  9. X. M. Ke, H. Zhu, J. H. Li, L. Chen, and X. Li, “Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates,” Sci. Rep. 7(1), 574 (2017).
    [Crossref]
  10. Z. L. Han, S. Ohno, Y. Tokizane, K. Nawata, T. Notake, Y. Takida, and H. Minamide, “Off-resonance and in-resonance metamaterial design for a high-transmission terahertz-wave quarter-wave plate,” Opt. Lett. 43(12), 2977–2980 (2018).
    [Crossref]
  11. T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42(13), 2372–2376 (2003).
    [Crossref]
  12. C.-F. Hsieh, C.-S. Yang, F.-C. Shih, R.-P. Pan, and C.-L. Pan, “Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate,” Opt. Express 27(7), 9933–9940 (2019).
    [Crossref]
  13. L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
    [Crossref]
  14. R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
    [Crossref]
  15. B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
    [Crossref]
  16. Y. Ji, F. Fan, S. Xu, J. Yu, and S. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
    [Crossref]
  17. N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express 18(6), 6097–6107 (2010).
    [Crossref]
  18. L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803 (2016).
    [Crossref]
  19. S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278(1), 28–33 (2007).
    [Crossref]
  20. Y. Inoue, H. Kubo, T. Shikada, and H. Moritake, “Ideal Polymer-LC Composite Structure for Terahertz Phase Shifters,” Macromol. Mater. Eng. 304(4), 1800766 (2019).
    [Crossref]
  21. C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
    [Crossref]
  22. R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
    [Crossref]
  23. C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. S. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
    [Crossref]
  24. M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
    [Crossref]
  25. O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
    [Crossref]
  26. T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
    [Crossref]
  27. J. Wang, H. Tian, Y. Wang, X. Y. Li, Y. J. Cao, L. Li, J. L. Liu, and Z. X. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
    [Crossref]
  28. L. Wang, S. J. Ge, W. Hu, M. Nakajima, and Y. Q. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
    [Crossref]
  29. L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
    [Crossref]
  30. J. Yang, P. Wang, T. Shi, S. Gao, H. B. Lu, Z. P. Yin, W. E. Lai, and G. S. Deng, “Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial,” Opt. Express 27(19), 27039–27045 (2019).
    [Crossref]
  31. X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
    [Crossref]

2019 (6)

Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

C.-F. Hsieh, C.-S. Yang, F.-C. Shih, R.-P. Pan, and C.-L. Pan, “Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate,” Opt. Express 27(7), 9933–9940 (2019).
[Crossref]

Y. Ji, F. Fan, S. Xu, J. Yu, and S. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Y. Inoue, H. Kubo, T. Shikada, and H. Moritake, “Ideal Polymer-LC Composite Structure for Terahertz Phase Shifters,” Macromol. Mater. Eng. 304(4), 1800766 (2019).
[Crossref]

T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]

J. Yang, P. Wang, T. Shi, S. Gao, H. B. Lu, Z. P. Yin, W. E. Lai, and G. S. Deng, “Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial,” Opt. Express 27(19), 27039–27045 (2019).
[Crossref]

2018 (4)

2017 (4)

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

L. Wang, S. J. Ge, W. Hu, M. Nakajima, and Y. Q. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref]

X. M. Ke, H. Zhu, J. H. Li, L. Chen, and X. Li, “Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates,” Sci. Rep. 7(1), 574 (2017).
[Crossref]

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

2016 (3)

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803 (2016).
[Crossref]

X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref]

2015 (3)

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

2014 (3)

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. S. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

2013 (1)

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

2012 (2)

2011 (2)

T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2010 (1)

2007 (1)

S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278(1), 28–33 (2007).
[Crossref]

2003 (1)

Abbott, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Bai, J. J.

Beccherelli, R.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Bhaskaran, M.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Buchnev, O.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Cao, Y. J.

Chan, C. H.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chang, C. L.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chang, S.

Y. Ji, F. Fan, S. Xu, J. Yu, and S. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref]

Chang, S. J.

Chen, C. Y.

Chen, L.

X. M. Ke, H. Zhu, J. H. Li, L. Chen, and X. Li, “Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates,” Sci. Rep. 7(1), 574 (2017).
[Crossref]

Chen, M.

Chen, P.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Chen, P. H.

Chen, S.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref]

Chen, T.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Chu, D. P.

X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Deng, G. S.

Fan, F.

Y. Ji, F. Fan, S. Xu, J. Yu, and S. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
[Crossref]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803 (2016).
[Crossref]

Fan, Y. X.

Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Fedotov, V. A.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Gajic, R.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Galstian, T.

S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278(1), 28–33 (2007).
[Crossref]

Gao, S.

Ge, S. J.

Gong, R. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Gong, Y. D.

Gu, Y. H.

Han, Z. L.

Harbour, S.

S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278(1), 28–33 (2007).
[Crossref]

He, X.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref]

Headland, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Hokmabadi, M. P.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Hong, M. H.

Hsieh, C.-F.

Hsieh, F. J.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Hu, F. R.

Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Hu, W.

Inoue, Y.

Y. Inoue, H. Kubo, T. Shikada, and H. Moritake, “Ideal Polymer-LC Composite Structure for Terahertz Phase Shifters,” Macromol. Mater. Eng. 304(4), 1800766 (2019).
[Crossref]

Isic, G.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Jansen, C.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Ji, Y.

Y. Ji, F. Fan, S. Xu, J. Yu, and S. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Ji, Y. Y.

Jiang, M. Z.

Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Jin, B. B.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Kaczmarek, M.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Kawatsuki, N.

T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]

Ke, X. M.

X. M. Ke, H. Zhu, J. H. Li, L. Chen, and X. Li, “Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates,” Sci. Rep. 7(1), 574 (2017).
[Crossref]

Kelly, J. V.

S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278(1), 28–33 (2007).
[Crossref]

Kim, S. M.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express 18(6), 6097–6107 (2010).
[Crossref]

Kowerdziej, R.

R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Krumbholz, N.

Kubo, H.

Y. Inoue, H. Kubo, T. Shikada, and H. Moritake, “Ideal Polymer-LC Composite Structure for Terahertz Phase Shifters,” Macromol. Mater. Eng. 304(4), 1800766 (2019).
[Crossref]

Kung, P.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Kushida, H.

T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]

Lai, W. E.

Li, D. X.

Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Li, J. H.

X. M. Ke, H. Zhu, J. H. Li, L. Chen, and X. Li, “Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates,” Sci. Rep. 7(1), 574 (2017).
[Crossref]

Li, L.

Li, S.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]

Li, X.

X. M. Ke, H. Zhu, J. H. Li, L. Chen, and X. Li, “Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates,” Sci. Rep. 7(1), 574 (2017).
[Crossref]

Li, X. F.

X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]

Li, X. Y.

Liang, L. J.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liang, X.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Lin, H. R.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Lin, X.

Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Lin, X. W.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Lindquist, R. G.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Liu, J. L.

Lu, H. B.

Lu, Y. N.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y. Q.

Miao, Y.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref]

Mikulics, M.

Minamide, H.

Moritake, H.

Y. Inoue, H. Kubo, T. Shikada, and H. Moritake, “Ideal Polymer-LC Composite Structure for Terahertz Phase Shifters,” Macromol. Mater. Eng. 304(4), 1800766 (2019).
[Crossref]

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Nakajima, M.

Nawata, K.

Nie, Y.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Noda, K.

T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]

Notake, T.

Ohno, S.

Okamoto, H.

T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]

Olifierczuk, M.

R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Ono, H.

T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]

Pan, C. L.

Pan, C.-L.

Pan, R. P.

Pan, R.-P.

Parka, J.

R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Pivnenko, M.

X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]

Podoliak, N.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Pun, Y. B.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Qian, H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Qian, Y. X.

Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Qin, Y. Q.

Qiu, C. W.

Rivera, E.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Sakamoto, M.

T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]

Sasaki, T.

T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]

Scheller, M.

Shakfa, M. K.

Shao, G. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Sheridan, J. T.

S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278(1), 28–33 (2007).
[Crossref]

Shi, T.

Shih, F.-C.

Shikada, T.

Y. Inoue, H. Kubo, T. Shikada, and H. Moritake, “Ideal Polymer-LC Composite Structure for Terahertz Phase Shifters,” Macromol. Mater. Eng. 304(4), 1800766 (2019).
[Crossref]

Sibik, J.

X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]

Sriram, S.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Sun, H.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]

Takida, Y.

Tan, N.

X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]

Tang, T. T.

Tareki, A.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Tian, H.

Tokizane, Y.

Tsai, T. R.

Upadhyay, A.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Vasic, B.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Vieweg, N.

Wang, D. C.

Wang, J.

Wang, L.

Wang, P.

Wang, W. C.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Wang, X. H.

Wang, Y.

Wilk, R.

Withayachumnankul, W.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Wrobel, J.

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Wu, J. B.

Wu, P. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Xu, S.

Y. Ji, F. Fan, S. Xu, J. Yu, and S. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Yang, C. S.

Yang, C.-S.

Yang, J.

Yang, L.

Yin, S.

Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Yin, Z. P.

Yu, J.

Y. Ji, F. Fan, S. Xu, J. Yu, and S. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Yu, P. S.

Zeitler, J. A.

X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]

Zhang, K.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref]

Zhang, X. C.

Zhang, X. Z.

Zheludev, N. I.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Zheng, Z. G.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Zhou, Z. X.

Zhu, H.

X. M. Ke, H. Zhu, J. H. Li, L. Chen, and X. Li, “Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates,” Sci. Rep. 7(1), 574 (2017).
[Crossref]

Zografopoulos, D. C.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Adv. Opt. Mater. (1)

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

AIP Adv. (1)

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Light: Sci. Appl. (1)

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liq. Cryst. (1)

X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]

Macromol. Mater. Eng. (1)

Y. Inoue, H. Kubo, T. Shikada, and H. Moritake, “Ideal Polymer-LC Composite Structure for Terahertz Phase Shifters,” Macromol. Mater. Eng. 304(4), 1800766 (2019).
[Crossref]

Mater. Res. Express (1)

Y. X. Fan, Y. X. Qian, S. Yin, D. X. Li, M. Z. Jiang, X. Lin, and F. R. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Nanoscale (2)

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref]

Y. Ji, F. Fan, S. Xu, J. Yu, and S. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Nanotechnology (1)

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Opt. Commun. (2)

S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278(1), 28–33 (2007).
[Crossref]

T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]

Opt. Express (8)

J. Wang, H. Tian, Y. Wang, X. Y. Li, Y. J. Cao, L. Li, J. L. Liu, and Z. X. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
[Crossref]

L. Wang, S. J. Ge, W. Hu, M. Nakajima, and Y. Q. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref]

J. Yang, P. Wang, T. Shi, S. Gao, H. B. Lu, Z. P. Yin, W. E. Lai, and G. S. Deng, “Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial,” Opt. Express 27(19), 27039–27045 (2019).
[Crossref]

N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express 18(6), 6097–6107 (2010).
[Crossref]

C.-F. Hsieh, C.-S. Yang, F.-C. Shih, R.-P. Pan, and C.-L. Pan, “Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate,” Opt. Express 27(7), 9933–9940 (2019).
[Crossref]

R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
[Crossref]

Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Sci. Rep. (1)

X. M. Ke, H. Zhu, J. H. Li, L. Chen, and X. Li, “Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates,” Sci. Rep. 7(1), 574 (2017).
[Crossref]

Sensors (1)

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Initial anchoring process of PDLC. (a) Schematic diagram showing the initial state of PDLC molecules with random alignments dispersed in the polymer solvent; (b) The state of PDLC molecules after being irradiated by the UV light and oriented by a magnetic field of 70 mT along the x axis.
Fig. 2.
Fig. 2. THz-TDS system and experimental results of PDLC. (a) The THz-TDS system light path diagram; (b) The time domain signals of o-light and e-light; (c) The intensity transmittances and (d) absorption coefficients of o-light and e-light; (e) The refractive index no and ne of PDLC; (f) Phase shifts of PDLC layer with the thickness of 500 µm under 0 V and 80 V.
Fig. 3.
Fig. 3. Geometric structure and birefringence properties of the dielectric gradient grating. (a) Structure diagram of the grating; (b) Microscope photograph of the grating; (c) Experimental refractive index no and ne of the grating; (d) Experimental birefringence phase shift of the grating.
Fig. 4.
Fig. 4. Schematic diagrams and simulation results of the dielectric gradient grating filled with PDLCs. (a) Schematic that the orientation of PDLC molecules is parallel with the grating direction when E = 0 V; (b) Schematic in which the orientation of PDLC molecules is perpendicular with the grating direction when E = 80 V; (c) Simulative phase shifts when the orientation of PDLC molecules gradually rotate from y axis (θ=90°) to x axis (θ=0°), representing the process of the increasing voltage from 0 V to 80 V; (d) Simulative intensity transmittances of x and y components when θ is 0° and 90°, respectively.
Fig. 5.
Fig. 5. Simulative polarization states of dielectric gradient grating filled with PDLC under the different LC molecular orientation angles. (a) At 0.375 THz; (b) At 0.8 THz.
Fig. 6.
Fig. 6. Schematic diagram in the experiment and experimental data. (a) The structure of the dielectric gradient grating filled with PDLCs in the experiment; (b) The schematic diagram of geometry configuration in the measurement; (c) The time domain signals of + 45° and -45° LP components at 0 V and (d) 80 V measured by THz-TDS system, respectively.
Fig. 7.
Fig. 7. Experimental results of the dielectric gradient grating filled with PDLCs. (a) The intensity transmittances of + 45° and -45° LP components at 0 V and (b) 80 V; (c) The curves of birefringent phase shift at 0 V, 40 V and 80 V; (d) Polarization ellipses when E = 0 V, 40 V and 80 V at 0.8 THz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n ( ω ) = 1 + Δ δ ( ω ) c ω d
κ ( ω ) =  ln ( t ( ω ) [ n ( ω ) + 1 ] 2 4 n ( ω ) ) c ω d
α ( ω ) = 2 ω κ ( ω ) c
E x 2 A x 2 + E y 2 A y 2 2 E x E y A x A y cos Δ δ = sin 2 Δ δ
tan 2 χ = sin 2 β sin Δ δ
tan 2 φ = tan 2 β cos Δ δ

Metrics