Abstract

Spectrally-tunable quantum light sources are key elements for the realization of long-distance quantum communication. A deterministically fabricated single-photon source with a photon extraction efficiency of η =(20 ± 2) %, a maximum tuning range of ΔE =  2.5 meV and a minimum g(2)(τ = 0) = 0.03 ± 0.02 is presented. The device consists of a single pre-selected quantum dot (QD) monolithically integrated into a microlens that is bonded onto a piezoelectric actuator via gold thermocompression bonding. Here, a thin gold layer simultaneously provides strain transfer and acts as a backside mirror for the QD-microlens to maximize the photon extraction efficiency. The QD-microlens structure is patterned via 3D in-situ electron-beam lithography (EBL), which allows us to pre-select and integrate suitable QDs based on their emission intensity and energy with a spectral accuracy of 1 meV for the final device. Together with strain fine-tuning, this enables the scalable realization of single-photon sources with identical emission energy. Moreover, we show that the emission energy of the source can be stabilized to µeV accuracy by closed-loop optical feedback. Thus, the combination of deterministic fabrication, spectral-tunability and high broadband photon-extraction efficiency makes the QD-microlens single-photon source an interesting building block for the realization of quantum communication networks.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging

Yu-Ming He, Jin Liu, Sebastian Maier, Monika Emmerling, Stefan Gerhardt, Marcelo Davanço, Kartik Srinivasan, Christian Schneider, and Sven Höfling
Optica 4(7) 802-808 (2017)

Deterministic generation of bright single resonance fluorescence photons from a Purcell-enhanced quantum dot-micropillar system

Sebastian Unsleber, Christian Schneider, Sebastian Maier, Yu-Ming He, Stefan Gerhardt, Chao-Yang Lu, Jian-Wei Pan, Martin Kamp, and Sven Höfling
Opt. Express 23(26) 32977-32985 (2015)

Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency

Sebastian Unsleber, Yu-Ming He, Stefan Gerhardt, Sebastian Maier, Chao-Yang Lu, Jian-Wei Pan, Niels Gregersen, Martin Kamp, Christian Schneider, and Sven Höfling
Opt. Express 24(8) 8539-8546 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proc. of IEEE International Conference on Computers, Systems and Signal Processing, 175 (1984).
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
    [Crossref]
  3. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
    [Crossref]
  4. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
    [Crossref]
  5. F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).
  6. M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, and O. G. Schmidt, “Entanglement Swapping with Semiconductor-generated Photons,” arxiv:1901.07833 (2019).
  7. H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
    [Crossref]
  8. J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
    [Crossref]
  9. A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
    [Crossref]
  10. A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
    [Crossref]
  11. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
    [Crossref]
  12. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
    [Crossref]
  13. H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
    [Crossref]
  14. A. Tiranov, J. Lavoie, A. Ferrier, P. Goldner, V. Verma, S. Nam, R. Mirin, A. Lita, F. Marsili, H. Herrmann, C. Silberhorn, N. Gisin, M. Afzelius, and F. Bussières, “Storage of hyperentanglement in a solid-state quantum memory,” Optica 2(4), 279 (2015).
    [Crossref]
  15. T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
    [Crossref]
  16. A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
    [Crossref]
  17. A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
    [Crossref]
  18. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006 (2008).
    [Crossref]
  19. F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
    [Crossref]
  20. R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
    [Crossref]
  21. R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
    [Crossref]
  22. P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
    [Crossref]
  23. M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
    [Crossref]
  24. A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
    [Crossref]
  25. J. Tian and P. Han, “Crystal growth and property characterization for PIN–PMN–PT ternary piezoelectric crystals,” J. Adv. Dielectr. 04(01), 1350027 (2014).
    [Crossref]
  26. S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
    [Crossref]
  27. P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
    [Crossref]
  28. A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1−xAs/GaAs self-organized quantum dots,” Phys. Rev. B 79(7), 075443 (2009).
    [Crossref]
  29. A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots,” Phys. Rev. B 76(20), 205324 (2007).
    [Crossref]
  30. S. Vieira, “The behavior and calibration of some piezoelectric ceramics used in the STM,” IBM J. Res. Dev. 30(5), 553–556 (1986).
    [Crossref]

2019 (2)

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

2017 (1)

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

2016 (2)

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

2015 (4)

A. Tiranov, J. Lavoie, A. Ferrier, P. Goldner, V. Verma, S. Nam, R. Mirin, A. Lita, F. Marsili, H. Herrmann, C. Silberhorn, N. Gisin, M. Afzelius, and F. Bussières, “Storage of hyperentanglement in a solid-state quantum memory,” Optica 2(4), 279 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

2014 (2)

J. Tian and P. Han, “Crystal growth and property characterization for PIN–PMN–PT ternary piezoelectric crystals,” J. Adv. Dielectr. 04(01), 1350027 (2014).
[Crossref]

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

2012 (1)

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

2011 (2)

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref]

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

2010 (2)

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
[Crossref]

2009 (1)

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1−xAs/GaAs self-organized quantum dots,” Phys. Rev. B 79(7), 075443 (2009).
[Crossref]

2008 (4)

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006 (2008).
[Crossref]

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

2007 (2)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
[Crossref]

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots,” Phys. Rev. B 76(20), 205324 (2007).
[Crossref]

2002 (1)

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

1998 (1)

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref]

1986 (1)

S. Vieira, “The behavior and calibration of some piezoelectric ceramics used in the STM,” IBM J. Res. Dev. 30(5), 553–556 (1986).
[Crossref]

Adlinger, J.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

Afzelius, M.

Atkinson, P.

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

Basso Basset, F.

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Baunack, S.

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

Becher, C.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Bennett, A. J.

A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
[Crossref]

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proc. of IEEE International Conference on Computers, Systems and Signal Processing, 175 (1984).

Benyoucef, M.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

Bester, G.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

Biasiol, G.

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

Bimberg, D.

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1−xAs/GaAs self-organized quantum dots,” Phys. Rev. B 79(7), 075443 (2009).
[Crossref]

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots,” Phys. Rev. B 76(20), 205324 (2007).
[Crossref]

Bloch, J.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proc. of IEEE International Conference on Computers, Systems and Signal Processing, 175 (1984).

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Buratto, S. K.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Burger, S.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Bussières, F.

Carmele, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

Carson, P. J.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Chen, D.

M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, and O. G. Schmidt, “Entanglement Swapping with Semiconductor-generated Photons,” arxiv:1901.07833 (2019).

Chen, Y.

M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, and O. G. Schmidt, “Entanglement Swapping with Semiconductor-generated Photons,” arxiv:1901.07833 (2019).

Chen, Y. H.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

Choi, K. S.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

Chung, T.-H.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Cirac, J. I.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Clarke, E.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Cooper, K.

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

da Silva, S. F. C.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Dada, A. C.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Dai, Q.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Deng, H.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

Deng, Y.-H.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Ding, F.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, and O. G. Schmidt, “Entanglement Swapping with Semiconductor-generated Photons,” arxiv:1901.07833 (2019).

Ding, X.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Dörr, K.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

Dousse, A.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Dwir, B.

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref]

Ellis, D. J. P.

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

Farrer, I.

A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
[Crossref]

Farrow, T.

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

Felici, M.

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

Ferrier, A.

Figueroa, E.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref]

Fischbach, S.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

Forchel, A.

Gallo, P.

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

Gerardot, B. D.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Gericke, F.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

Gisin, N.

Goldner, P.

Gschrey, M.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

Han, P.

J. Tian and P. Han, “Crystal growth and property characterization for PIN–PMN–PT ternary piezoelectric crystals,” J. Adv. Dielectr. 04(01), 1350027 (2014).
[Crossref]

He, Y.-M.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Heindel, T.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006 (2008).
[Crossref]

Herrmann, H.

Höfling, S.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006 (2008).
[Crossref]

Hu, H.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Huo, Y.-H.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Iles-Smith, J.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Imamoglu, A.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Jöns, K. D.

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Kaganskiy, A.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

Kapon, E.

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

Keil, R.

M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, and O. G. Schmidt, “Entanglement Swapping with Semiconductor-generated Photons,” arxiv:1901.07833 (2019).

Kimble, H. J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

Kiraz, A.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Kistner, C.

Knorr, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

Krápek, V.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

Kremer, P. E.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Krüger, L.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Kumar, P.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Kumar, S.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

Lanco, L.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Laurat, J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

Lavoie, J.

Lemaître, A.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Li, J.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Li, J.-P.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Lita, A.

Liu, J.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Liu, R.-Z.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Lu, C.-Y.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Ma, Y.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Marsili, F.

Martín-Sánchez, J.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

Mason, M. D.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Miard, A.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Michler, P.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Mirin, R.

Nam, S.

Nicoll, C. A.

A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
[Crossref]

Nölleke, C.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref]

Pan, J.-W.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Patel, R. B.

A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
[Crossref]

Petroff, P. M.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Piredda, G.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

Plumhof, J. D.

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

Qin, J.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Rahimi-Iman, A.

Rastelli, A.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Reindl, M.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Reiserer, A.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref]

Reitzenstein, S.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006 (2008).
[Crossref]

Rempe, G.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref]

Rezaev, R. O.

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

Ritchie, D. A.

A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
[Crossref]

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

Ritter, S.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref]

Roblin, C.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Rodt, S.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

Rota, M. B.

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Rudra, A.

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

Sagnes, I.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Schimpf, C.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Schlehahn, A.

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

Schliwa, A.

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1−xAs/GaAs self-organized quantum dots,” Phys. Rev. B 79(7), 075443 (2009).
[Crossref]

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots,” Phys. Rev. B 76(20), 205324 (2007).
[Crossref]

Schmidt, F.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Schmidt, O. G.

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, and O. G. Schmidt, “Entanglement Swapping with Semiconductor-generated Photons,” arxiv:1901.07833 (2019).

Schmidt, R.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Schnauber, P.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Schneider, C.

Schoenfeld, W. V.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Schröter, J. R.

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

Schulze, J.-H.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

See, P.

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

Seifried, M.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Semenova, E.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Senellart, P.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Shields, A. J.

A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
[Crossref]

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

Silberhorn, C.

Singh, R.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

Skiba-Szymanska, J.

A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
[Crossref]

Sorba, L.

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

Specht, H. P.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref]

Srinivasan, K.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Strittmatter, A.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

Stroj, S.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

Strouse, G. F.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Su, R.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Suczynski, J.

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

Surrente, A.

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

Tauscher, E. B. Y.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

Tedeschi, D.

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
[Crossref]

Thoma, A.

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Tian, J.

J. Tian and P. Han, “Crystal growth and property characterization for PIN–PMN–PT ternary piezoelectric crystals,” J. Adv. Dielectr. 04(01), 1350027 (2014).
[Crossref]

Tiranov, A.

Trotta, R.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Unitt, D. C.

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

Uphoff, M.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref]

Verma, V.

Vieira, S.

S. Vieira, “The behavior and calibration of some piezoelectric ceramics used in the STM,” IBM J. Res. Dev. 30(5), 553–556 (1986).
[Crossref]

Wang, H.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Wang, X.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Ward, M. B.

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

Wei, Y.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Wildmann, J. S.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

Winkelnkemper, M.

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1−xAs/GaAs self-organized quantum dots,” Phys. Rev. B 79(7), 075443 (2009).
[Crossref]

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots,” Phys. Rev. B 76(20), 205324 (2007).
[Crossref]

Wohlfeil, B.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Wolters, J.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

Yang, J.

M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, and O. G. Schmidt, “Entanglement Swapping with Semiconductor-generated Photons,” arxiv:1901.07833 (2019).

Yang, X.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Yao, B.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Yu, Y.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Zallo, E.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

Zander, T.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

Zeuner, K. D.

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Zhong, H.-S.

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Zoller, P.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Zopf, M.

M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, and O. G. Schmidt, “Entanglement Swapping with Semiconductor-generated Photons,” arxiv:1901.07833 (2019).

Zwiller, V.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

Adv. Mater. (1)

R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, “Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators,” Adv. Mater. 24(20), 2668–2672 (2012).
[Crossref]

Appl. Phys. Lett. (2)

S. Fischbach, A. Kaganskiy, E. B. Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, and S. Reitzenstein, “Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror,” Appl. Phys. Lett. 111(1), 011106 (2017).
[Crossref]

A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97(3), 031104 (2010).
[Crossref]

IBM J. Res. Dev. (1)

S. Vieira, “The behavior and calibration of some piezoelectric ceramics used in the STM,” IBM J. Res. Dev. 30(5), 553–556 (1986).
[Crossref]

J. Adv. Dielectr. (1)

J. Tian and P. Han, “Crystal growth and property characterization for PIN–PMN–PT ternary piezoelectric crystals,” J. Adv. Dielectr. 04(01), 1350027 (2014).
[Crossref]

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. (1)

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

Nanotechnology (2)

T. Farrow, P. See, A. J. Bennett, M. B. Ward, P. Atkinson, K. Cooper, D. J. P. Ellis, D. C. Unitt, D. A. Ritchie, and A. J. Shields, “Single-photon emitting diode based on a quantum dot in a micro-pillar,” Nanotechnology 19(34), 345401 (2008).
[Crossref]

A. Surrente, M. Felici, P. Gallo, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, and E. Kapon, “Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities,” Nanotechnology 22(46), 465203 (2011).
[Crossref]

Nat. Commun. (2)

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Adlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7(1), 10375 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Nat. Nanotechnol. (1)

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Nat. Photonics (1)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
[Crossref]

Nature (2)

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref]

Opt. Express (1)

Optica (1)

Phys. Rev. B (3)

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1−xAs/GaAs self-organized quantum dots,” Phys. Rev. B 79(7), 075443 (2009).
[Crossref]

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots,” Phys. Rev. B 76(20), 205324 (2007).
[Crossref]

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Phys. Rev. Lett. (6)

A. Dousse, L. Lanco, J. Suczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref]

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, “Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress,” Phys. Rev. Lett. 104(6), 067405 (2010).
[Crossref]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

Phys. Status Solidi B (1)

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229(1), 399–405 (2002).
[Crossref]

Rev. Sci. Instrum. (1)

A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.-H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing,” Rev. Sci. Instrum. 86(7), 073903 (2015).
[Crossref]

Other (3)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proc. of IEEE International Conference on Computers, Systems and Signal Processing, 175 (1984).

F. Basso Basset, M. B. Rota, C. Schimpf, D. Tedeschi, K. D. Zeuner, S. F. C. da Silva, M. Reindl, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Entanglement swapping with photons generated on demand by a quantum dot,” arxiv:1901.06646 (2019).

M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, and O. G. Schmidt, “Entanglement Swapping with Semiconductor-generated Photons,” arxiv:1901.07833 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic illustration of the fabrication process of a tunable QD microlens: (a) Gold thermocompression bonding of the layer structure including InGaAs QDs, followed by a wet etching step to remove the GaAs substrate and the etch stop layer. (b) Mapping process for the in-situ EBL. Suitable QDs are chosen and integrated into microlens structures. (c) The PIN-PMN-PT is contacted to transfer strain to the QD microlens for spectral-tuning of the single-photon emission.
Fig. 2.
Fig. 2. (a) Microscope image of CL map areas taken during in-situ EBL with QD microlenses. (b) Scanning electron microscope image of a microlens. (c) Micro-photoluminescence spectrum of a QD microlens (QDM1) at T = 10 K. (d) Photon-autocorrelation measurements stating single-photon emission with g(2)(τ=0) = 0.03 ± 0.02.
Fig. 3.
Fig. 3. (a) Energy tuning of the X emission line of QDM1 by application of an electric field F to the piezoelectric actuator. (b) Extraction efficiency (black, left axis), equal-time second-order photon autocorrelation (g(2) (τ=0)) results (red squares, right axis) and calculated g(2)(τ=0) taking the F-dependent extraction efficiency into account (red circles, right axis). X emission energy for the full tuning range (blue, right axis).
Fig. 4.
Fig. 4. Strain-tuning of four QD microlenses (QDM2-5) which were deterministically fabricated together with device QD1 on the same piece of sample. The excitonic emission energies of these QDM2-5 microlenses are plotted relative to the X emission energy of QDM1. They can be tuned through resonance with QD microlens QDM1 by applying suitable electrical fields between about −20 kVcm−1 and 10 kVcm−1 to the piezo actuator.
Fig. 5.
Fig. 5. Calculated hydrostatic (a1/a2) and biaxial (b1/b2) strain distributions in a QD microlens. (a1/b1) refer to the situation in absence of external strain, while (a2) and (b2) show the additional effects by external tensile (left) and compressive strain (right). The domain is divided into (i) air, (ii) lens, (iii) QD, (iv) wetting layer, (v) spacer layer, and (vi) the piezoelectric actuator. Red (blue) color indicates the relative tensile (compressive) strain.
Fig. 6.
Fig. 6. (a) Time series of the excitonic emission energy of a QD-microlens after changing the piezo field from zero to $F = 12\; \textrm{kV}\;{\textrm{cm}^{ - 1}}$ at time t = 0 in open-loop configuration. (b) Time-dependence of emission energy in closed loop configuration using an active optical feedback control. The jump in intensity at t = 2 min was caused by an intentional perturbation of the system. (c) Zoom-in view of the emission energy relative to the set point (error bars in shaded grey). (d) Corresponding histogram of relative emission energies with a standard deviation of 0.5 µeV.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( τ ) = ( p 0 e | τ t d | + p t i = 5 i 0 5 e | τ ( i f ) t d | ) G ( τ , σ res )
Δ E ( c ) = a g ( Δ ϵ hy ( c ) ) 1 2 b v ( Δ ϵ biax ( c ) ) =   ± 1.25  meV .
ϵ exp = d 31 F max = 1500 p C N 1 20 kV cm 1 = 3 10 3 ,

Metrics