Abstract

We present dynamic membrane projection lithography as a method to create three dimensional metallic traces in hemispherical cavities. The technique entails directional evaporation through perforations in a membrane covering a hemispherical unit-cell cavity. The sample is positioned on a rotating stage and tilted with respect to the incident evaporated beam, such that the traces are deposited on the interior face of the cavity. A simple self-aligned version and a more general two-step fabrication version are presented. Furthermore, by incorporating a fixed shutter, both closed-loop and split-loop structures are demonstrated.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon

D. Bruce Burckel, Paul J. Resnick, Patrick S. Finnegan, Michael B. Sinclair, and Paul S. Davids
Opt. Mater. Express 5(10) 2231-2239 (2015)

Double metal layer lift-off process for the robust fabrication of plasmonic nano-antenna arrays on dielectric substrates using e-beam lithography

P. Muñoz, Y. S. Yong, M. Dijkstra, F. B. Segerink, and S. M. García-Blanco
Opt. Mater. Express 9(5) 2046-2056 (2019)

Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [Invited]

Shahin Bagheri, Christine M. Zgrabik, Timo Gissibl, Andreas Tittl, Florian Sterl, Ramon Walter, Stefano De Zuani, Audrey Berrier, Thomas Stauden, Gunther Richter, Evelyn L. Hu, and Harald Giessen
Opt. Mater. Express 5(11) 2625-2633 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  4. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
    [Crossref] [PubMed]
  5. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [Crossref] [PubMed]
  6. C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials—more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
    [Crossref] [PubMed]
  7. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
    [Crossref] [PubMed]
  8. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  9. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
    [Crossref] [PubMed]
  10. J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.) 17(10), 1276–1281 (2005).
    [Crossref]
  11. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
    [Crossref] [PubMed]
  12. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
    [Crossref] [PubMed]
  13. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3171–3175 (2010).
    [Crossref] [PubMed]
  14. M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst. 13(6), 956–962 (2004).
    [Crossref]
  15. N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
    [Crossref]
  16. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
    [Crossref] [PubMed]
  17. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]

2011 (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

2010 (4)

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials—more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
[Crossref] [PubMed]

2009 (2)

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

2008 (1)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

2006 (3)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

2005 (1)

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.) 17(10), 1276–1281 (2005).
[Crossref]

2004 (1)

M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst. 13(6), 956–962 (2004).
[Crossref]

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Adato, R.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Aksu, S.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Altug, H.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Artar, A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Auerswald, J.

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

Boogaart, M. A. F.

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[Crossref] [PubMed]

Brener, I.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

Brugger, J.

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Burckel, D. B.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

Cortie, M. B.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.) 17(10), 1276–1281 (2005).
[Crossref]

Doeswijk, L. M.

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

Dubochet, O.

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

Ellis, A. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

Frazier, A. B.

M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst. 13(6), 956–962 (2004).
[Crossref]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Ginn, J. C.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

Graff, M.

M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst. 13(6), 956–962 (2004).
[Crossref]

Gray, S. K.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Guyot-Sionnest, P.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Halas, N. J.

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Hessler, T.

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

Huang, M.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Knapp, H. F.

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[Crossref] [PubMed]

Lee, T.-W.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Liu, J.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.) 17(10), 1276–1281 (2005).
[Crossref]

Liu, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Maaroof, A. I.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.) 17(10), 1276–1281 (2005).
[Crossref]

Mirin, N. A.

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

Mohanty, S. K.

M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst. 13(6), 956–962 (2004).
[Crossref]

Moss, E.

M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst. 13(6), 956–962 (2004).
[Crossref]

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pelton, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Sinclair, M. B.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials—more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
[Crossref] [PubMed]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Takano, N.

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

Ten Eyck, G. A.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials—more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
[Crossref] [PubMed]

Wendt, J. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

Wieczorek, L.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.) 17(10), 1276–1281 (2005).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yanik, A. A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (3)

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.) 17(10), 1276–1281 (2005).
[Crossref]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

J. Microelectromech. Syst. (1)

M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst. 13(6), 956–962 (2004).
[Crossref]

J. Micromech. Microeng. (1)

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng. 16(8), 1606–1613 (2006).
[Crossref]

Nano Lett. (4)

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[Crossref] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Phys. Rev. Lett. (4)

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Science (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials—more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Supplementary Material (1)

» Media 1: AVI (88 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sequence of schematic images depicting the two-step process flow to create the hemispherical cavity. A) Starting from a substrate B) Deposit a barrier material; C) Pattern a small hole; D) Create cavity using an isotropic etch (barrier is translucent in this pane); E) Remove Barrier/deposit and planarize with a backfill material; F) Deposit membrane material; G) Pattern membrane material with deposition apertures; H) Remove backfill material; I) Perform rotated directional evaporation (see Media 1).
Fig. 2
Fig. 2 Sequence of schematic images depicting the rotated directional evaporation to create traces using dynamic membrane projection lithography.
Fig. 3
Fig. 3 Schematic image showing the tilted rotation stage and normally incident metallic evaporation.
Fig. 4
Fig. 4 Schematic showing A) a sequence of images during evaporation using the tilted rotation stage and B) inclusion of a fixed shutter to create gaps in the deposited loops. Inset images show representative final structures.
Fig. 5
Fig. 5 Geometry for designing antennas using dynamic membrane projection lithography.
Fig. 6
Fig. 6 A) Top down plot of the deposited traces from a membrane with 3 perforations near the center of a 1.8 μm radius bowl and 20 degree tilted evaporation. B) Cross section view of unit-cell showing a nearly planar antenna. C) Top down plot of the deposited traces from a membrane with 3 perforations near the rim of a 1.8 μm radius bowl and 45 degree tilted evaporation. D) Cross section view of unit-cell containing a fully three-dimensional trace with significant out of plane current flow.
Fig. 7
Fig. 7 A) Layout of one-, two-, three- and four-perforation e-beam written patterns. B) Top-down SEM image of a portion of a 5mm x 5mm region containing four-loop unit-cells.
Fig. 8
Fig. 8 A–C) Top Down SEM images of 1, 2 and 3-Loop antennas created using the configuration shown in Fig. 4A. D–F) Top Down SEM images of 1, 2 and 3-Loop antennas with gaps created using the shutter configuration shown in Fig. 4B.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R 2 = ( x x 0 ) 2 + ( y y 0 ) 2 + ( z z 0 ) 2 ,
x= x 1 +At;y= y 1 +Bt;z= z 1 +Ct;
A=sinφcosθ;B=sinφcosθ;C=cosφ;

Metrics