Abstract

We predict that a liquid crystal/silver nanoparticles mixture can be designed so that its effective ordinary and extraordinary permittivities have, in a frequency range, real parts of different signs. We exploit this result to design an optical switch obtained by sandwiching a few hundred nanometers thick slab of the proposed mixture between two silica layers. By resorting to full-wave simulations, we show that, by varying the direction of an externally applied electric field, the transmissivity of the structure can be switched between 0.02 and 0.4 at a wavelength close to the frequency range where the medium is indefinite. The device functionality physically stems from the fact that the orientation of the hyperbola characterizing extraordinary waves within the indefinite medium follows the applied electric field direction and therefore, if the hyperbola asymptote is nearly normal to the slab, full switch between evanescent and homogeneous propagating waves can be achieved within the medium.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlling hyperbolic metamaterials with a core-shell nanowire array [Invited]

V. Yu. Reshetnyak, I. P. Pinkevych, A. M. Urbas, and D. R. Evans
Opt. Mater. Express 7(2) 542-554 (2017)

Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal [Invited]

Chun-Ta Wang and Tsung-Hsien Lin
Opt. Mater. Express 1(8) 1457-1462 (2011)

Tunable optical metamaterial based on liquid crystal-gold nanosphere composite

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park
Opt. Express 17(22) 19459-19469 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
    [Crossref] [PubMed]
  2. D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
    [Crossref]
  3. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
    [Crossref]
  4. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
    [Crossref]
  5. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [Crossref] [PubMed]
  6. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
    [Crossref] [PubMed]
  7. J. Yao, K. T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y. L. Wang, and X. Zhang, “Imaging visible light using anisotropic metamaterial slab lens,” Opt. Express 17, 22380–22385 (2009).
    [Crossref]
  8. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhara, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
    [Crossref]
  9. Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, “Hyper-interface, the bridge between radiative wave and evanescent wave,” Appl. Phys. Lett. 96, 113507 (2010).
    [Crossref]
  10. J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, and J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16–18 (2010).
    [Crossref] [PubMed]
  11. J. Zhao, Yan Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
    [Crossref]
  12. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
    [Crossref]
  13. J. Elser, R. Wangberg, and V. A. Podolskiy, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
    [Crossref]
  14. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008).
    [Crossref] [PubMed]
  15. M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
    [Crossref]
  16. J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E 74, 046618 (2006).
    [Crossref]
  17. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
    [Crossref]
  18. Y. J. Huang, W. T. Lu, and S. Sridhar, “Nanowire waveguide made from extremely anisotropic metamaterials,” Phys. Rev. A 77, 063836 (2008).
    [Crossref]
  19. D. Korobkin, B. Neuner, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, “Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium,” Opt. Express 18, 22734–22746 (2010).
    [Crossref] [PubMed]
  20. J. Sun, J. Zhou, B. Li, and Feiyu Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98, 101901 (2011).
    [Crossref]
  21. R. Wang, J. Sun, and J. Zhoua, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97, 031912 (2010).
    [Crossref]
  22. M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103, 036101 (2008).
    [Crossref]
  23. R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express 17, 19459–19469 (2009).
    [Crossref] [PubMed]
  24. X. Wang, D. Kwon, D. H. Werner, and I. C. Khoo, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
    [Crossref]
  25. D. H. Werner, D. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15, 3342–3347 (2007).
    [Crossref] [PubMed]
  26. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010).
  27. I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31, 2592–2594 (2006).
    [Crossref] [PubMed]
  28. I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid Crystals Tunable Optical Metamaterials,” IEEE J. Sel. Top. Quant. Electron. 16, 410–417 (2010).
    [Crossref]
  29. G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field-induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal metamaterial near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010).
    [Crossref]
  30. J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature 362525–527 (1993).
    [Crossref]
  31. G. P. Bryan-Brown, E. L. Wood, and I. C. Sage, “Weak surface anchoring of liquid crystals,” Nature 399338–340 (1999).
    [Crossref]
  32. A. Sihvola, “Mixing Rules with Complex Dielectric Coefficients,” Subsurf. Sens. Technol. and Appl. 1, 393–415 (2000).
    [Crossref]
  33. S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
    [Crossref]
  34. E. D. Palik, Handbook of Optical Constants (Academic, 1985).
  35. R. Stepanyan, “Effective dielectric properties of composite materials in the surface layer,” Phys. Rev. B 67, 073403 (2003).
    [Crossref]

2011 (1)

J. Sun, J. Zhou, B. Li, and Feiyu Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

2010 (9)

R. Wang, J. Sun, and J. Zhoua, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97, 031912 (2010).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010).

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid Crystals Tunable Optical Metamaterials,” IEEE J. Sel. Top. Quant. Electron. 16, 410–417 (2010).
[Crossref]

G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field-induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal metamaterial near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010).
[Crossref]

D. Korobkin, B. Neuner, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, “Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium,” Opt. Express 18, 22734–22746 (2010).
[Crossref] [PubMed]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhara, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, “Hyper-interface, the bridge between radiative wave and evanescent wave,” Appl. Phys. Lett. 96, 113507 (2010).
[Crossref]

J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, and J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16–18 (2010).
[Crossref] [PubMed]

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

2009 (4)

J. Yao, K. T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y. L. Wang, and X. Zhang, “Imaging visible light using anisotropic metamaterial slab lens,” Opt. Express 17, 22380–22385 (2009).
[Crossref]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[Crossref]

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express 17, 19459–19469 (2009).
[Crossref] [PubMed]

2008 (4)

M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103, 036101 (2008).
[Crossref]

Y. J. Huang, W. T. Lu, and S. Sridhar, “Nanowire waveguide made from extremely anisotropic metamaterials,” Phys. Rev. A 77, 063836 (2008).
[Crossref]

J. Zhao, Yan Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008).
[Crossref] [PubMed]

2007 (4)

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[Crossref] [PubMed]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

X. Wang, D. Kwon, D. H. Werner, and I. C. Khoo, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[Crossref]

D. H. Werner, D. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15, 3342–3347 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (1)

S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
[Crossref]

2004 (2)

D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
[Crossref]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

2003 (2)

D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref] [PubMed]

R. Stepanyan, “Effective dielectric properties of composite materials in the surface layer,” Phys. Rev. B 67, 073403 (2003).
[Crossref]

2000 (1)

A. Sihvola, “Mixing Rules with Complex Dielectric Coefficients,” Subsurf. Sens. Technol. and Appl. 1, 393–415 (2000).
[Crossref]

1999 (1)

G. P. Bryan-Brown, E. L. Wood, and I. C. Sage, “Weak surface anchoring of liquid crystals,” Nature 399338–340 (1999).
[Crossref]

1993 (1)

J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature 362525–527 (1993).
[Crossref]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Alekseyev, L. V.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

Barnakov, Yu. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

Bartal, G.

Bryan-Brown, G. P.

G. P. Bryan-Brown, E. L. Wood, and I. C. Sage, “Weak surface anchoring of liquid crystals,” Nature 399338–340 (1999).
[Crossref]

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhara, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Chen, Yan

J. Zhao, Yan Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

Cheng, K. L.

S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
[Crossref]

Dabrowski, R.

S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
[Crossref]

Diaz, A.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid Crystals Tunable Optical Metamaterials,” IEEE J. Sel. Top. Quant. Electron. 16, 410–417 (2010).
[Crossref]

I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31, 2592–2594 (2006).
[Crossref] [PubMed]

Elser, J.

J. Elser, R. Wangberg, and V. A. Podolskiy, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[Crossref]

Feng, Y.

J. Zhao, Yan Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

Ferro, G.

Fietz, C.

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Gauza, S.

S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
[Crossref]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Gorkunov, M. V.

M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103, 036101 (2008).
[Crossref]

Gultepe, E.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhara, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Hu, X.

Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, “Hyper-interface, the bridge between radiative wave and evanescent wave,” Appl. Phys. Lett. 96, 113507 (2010).
[Crossref]

J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, and J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16–18 (2010).
[Crossref] [PubMed]

Huang, J.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid Crystals Tunable Optical Metamaterials,” IEEE J. Sel. Top. Quant. Electron. 16, 410–417 (2010).
[Crossref]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhara, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Y. J. Huang, W. T. Lu, and S. Sridhar, “Nanowire waveguide made from extremely anisotropic metamaterials,” Phys. Rev. A 77, 063836 (2008).
[Crossref]

Jacob, Z.

Jarema, M.

Jegenyes, N.

Jiang, X.

Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, “Hyper-interface, the bridge between radiative wave and evanescent wave,” Appl. Phys. Lett. 96, 113507 (2010).
[Crossref]

J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, and J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16–18 (2010).
[Crossref] [PubMed]

Kang, Feiyu

J. Sun, J. Zhou, B. Li, and Feiyu Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

Khoo, I. C.

Kildishev, A. V.

Kivshar, Y. S.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010).

Kolinko, P.

D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
[Crossref]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Korobkin, D.

Koschny, T.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[Crossref]

Kwon, D.

X. Wang, D. Kwon, D. H. Werner, and I. C. Khoo, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[Crossref]

D. H. Werner, D. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15, 3342–3347 (2007).
[Crossref] [PubMed]

Lee, H.

Li, B.

J. Sun, J. Zhou, B. Li, and Feiyu Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

Li, H.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

Li, J.

S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
[Crossref]

Li, X.

J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, and J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16–18 (2010).
[Crossref] [PubMed]

Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, “Hyper-interface, the bridge between radiative wave and evanescent wave,” Appl. Phys. Lett. 96, 113507 (2010).
[Crossref]

Liang, X.

Liang, Z.

Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, “Hyper-interface, the bridge between radiative wave and evanescent wave,” Appl. Phys. Lett. 96, 113507 (2010).
[Crossref]

Liou, J.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid Crystals Tunable Optical Metamaterials,” IEEE J. Sel. Top. Quant. Electron. 16, 410–417 (2010).
[Crossref]

Liu, Y.

Liu, Z.

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhara, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Y. J. Huang, W. T. Lu, and S. Sridhar, “Nanowire waveguide made from extremely anisotropic metamaterials,” Phys. Rev. A 77, 063836 (2008).
[Crossref]

Ma, Y.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid Crystals Tunable Optical Metamaterials,” IEEE J. Sel. Top. Quant. Electron. 16, 410–417 (2010).
[Crossref]

Menon, L.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhara, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Minovich, A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010).

Mitus, A. C.

Mock, J. J.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Narimanov, E.

Narimanov, E. E.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Neshev, D. N.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010).

Neuner, B.

Noginov, M. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

Osipov, M. A.

M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103, 036101 (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants (Academic, 1985).

Park, K.

Park, W.

Patel, J. S.

J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature 362525–527 (1993).
[Crossref]

Pawlik, G.

Podolskiy, V. A.

J. Elser, R. Wangberg, and V. A. Podolskiy, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

Podolsky, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Powell, D. A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010).

Pratibha, R.

Rye, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Sage, I. C.

G. P. Bryan-Brown, E. L. Wood, and I. C. Sage, “Weak surface anchoring of liquid crystals,” Nature 399338–340 (1999).
[Crossref]

Schilling, J.

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E 74, 046618 (2006).
[Crossref]

Schurig, D.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref] [PubMed]

Shadrivov, I. V.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010).

Shalaev, V. M.

Shvets, G.

Sihvola, A.

A. Sihvola, “Mixing Rules with Complex Dielectric Coefficients,” Subsurf. Sens. Technol. and Appl. 1, 393–415 (2000).
[Crossref]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Smalyukh, I. I.

Smith, D. R.

D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).
[Crossref]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref] [PubMed]

Soukoulis, C. M.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[Crossref]

Spadlo, A.

S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
[Crossref]

Sridhar, S.

Y. J. Huang, W. T. Lu, and S. Sridhar, “Nanowire waveguide made from extremely anisotropic metamaterials,” Phys. Rev. A 77, 063836 (2008).
[Crossref]

Sridhara, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhara, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Stepanyan, R.

R. Stepanyan, “Effective dielectric properties of composite materials in the surface layer,” Phys. Rev. B 67, 073403 (2003).
[Crossref]

Stinger, M. V.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid Crystals Tunable Optical Metamaterials,” IEEE J. Sel. Top. Quant. Electron. 16, 410–417 (2010).
[Crossref]

Sun, C.

Sun, J.

J. Sun, J. Zhou, B. Li, and Feiyu Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

R. Wang, J. Sun, and J. Zhoua, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97, 031912 (2010).
[Crossref]

Tsai, K. T.

Tumkur, T.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

Tzeng, Y. N.

S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
[Crossref]

Walasik, W.

Wang, R.

R. Wang, J. Sun, and J. Zhoua, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97, 031912 (2010).
[Crossref]

Wang, X.

X. Wang, D. Kwon, D. H. Werner, and I. C. Khoo, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[Crossref]

Wang, Y.

Wang, Y. L.

Wangberg, R.

J. Elser, R. Wangberg, and V. A. Podolskiy, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Werner, D. H.

Wood, E. L.

G. P. Bryan-Brown, E. L. Wood, and I. C. Sage, “Weak surface anchoring of liquid crystals,” Nature 399338–340 (1999).
[Crossref]

Wu, S. T.

S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
[Crossref]

Xiong, Y.

Yang, J.

Yao, J.

Yokoyama, H.

J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature 362525–527 (1993).
[Crossref]

Zhang, X.

Zhao, J.

J. Zhao, Yan Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

Zhou, J.

J. Sun, J. Zhou, B. Li, and Feiyu Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

Zhoua, J.

R. Wang, J. Sun, and J. Zhoua, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97, 031912 (2010).
[Crossref]

Zhu, G.

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

Zi, J.

J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, and J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16–18 (2010).
[Crossref] [PubMed]

Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, “Hyper-interface, the bridge between radiative wave and evanescent wave,” Appl. Phys. Lett. 96, 113507 (2010).
[Crossref]

Appl. Phys. Lett. (11)

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhara, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, “Hyper-interface, the bridge between radiative wave and evanescent wave,” Appl. Phys. Lett. 96, 113507 (2010).
[Crossref]

J. Zhao, Yan Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

J. Elser, R. Wangberg, and V. A. Podolskiy, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[Crossref]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

X. Wang, D. Kwon, D. H. Werner, and I. C. Khoo, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010).

J. Sun, J. Zhou, B. Li, and Feiyu Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

R. Wang, J. Sun, and J. Zhoua, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97, 031912 (2010).
[Crossref]

IEEE J. Sel. Top. Quant. Electron. (1)

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid Crystals Tunable Optical Metamaterials,” IEEE J. Sel. Top. Quant. Electron. 16, 410–417 (2010).
[Crossref]

J. Appl. Phys. (1)

M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103, 036101 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Liq. Cryst. (1)

S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, and K. L. Cheng, “High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures,” Liq. Cryst. 32, 10771085 (2005).
[Crossref]

Nat. Materials (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolsky, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Materials 6, 946–950 (2007).
[Crossref]

Nature (2)

J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature 362525–527 (1993).
[Crossref]

G. P. Bryan-Brown, E. L. Wood, and I. C. Sage, “Weak surface anchoring of liquid crystals,” Nature 399338–340 (1999).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. A (1)

Y. J. Huang, W. T. Lu, and S. Sridhar, “Nanowire waveguide made from extremely anisotropic metamaterials,” Phys. Rev. A 77, 063836 (2008).
[Crossref]

Phys. Rev. B (2)

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[Crossref]

R. Stepanyan, “Effective dielectric properties of composite materials in the surface layer,” Phys. Rev. B 67, 073403 (2003).
[Crossref]

Phys. Rev. E (1)

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E 74, 046618 (2006).
[Crossref]

Phys. Rev. Lett. (1)

D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref] [PubMed]

Subsurf. Sens. Technol. and Appl. (1)

A. Sihvola, “Mixing Rules with Complex Dielectric Coefficients,” Subsurf. Sens. Technol. and Appl. 1, 393–415 (2000).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Setup geometry. The liquid crystal (LC) fills the slab of thickness L, it is sandwiched between two silica layers of thickness d and it hosts silver nanoparticles (Ag) of radius r. The externally applied electric field E S , inclined at an angle ϕ with the z-axis, aligns the liquid crystal molecules in the direction of the unit vector (parallel to the electric field). The vacuum electromagnetic plane wave is made to impinge orthogonally onto the device interface.
Fig. 2
Fig. 2 Dielectric permittivities as a function of the vacuum wavelength λ. (a) Ordinary and extraordinary permittivities of the LC. (b) Real and imaginary parts of the silver permittivity. (c) Real and imaginary parts of the ordinary and extraordinary permittivities of the homogeneous effective medium. The shaded region (λ 1 < λ < λ 2, where λ 1 = 418 nm and λ 2 = 427.5 nm) corresponds to the spectral range where the effective permittivity tensor is indefinite.
Fig. 3
Fig. 3 Dependence of the wavelengths λ 1(f) and λ 2(f), characterizing the spectral region λ 1(f) < λ < λ 2(f) where the medium is indefinite, on the nanoparticle volume filling fraction f for 0.02 < f < 0.1.
Fig. 4
Fig. 4 (a) Plot of the transmissivity of the device reported in Fig.1 (evaluated using the effective medium model for the LC/nanoparticels mixture) as a function of the vacuum wavelength of the incident radiation and the angle ϕ. (b) Level plot of the transmissivity of panel (a) restricted to region II where the effective medium has indefinite permittivity.
Fig. 5
Fig. 5 Transmissivity T(ϕ) for λ = 420 nm extracted from Fig.4(a). In the insets, the extraordinary waves hyperbolas of Eq.(4) are plotted in the two relevant situations (A) ϕ = 20° and (B) ϕ = 80° (regarding the permittivities as real quantities).
Fig. 6
Fig. 6 (a) Device transmissivity T as a function of the vacuum wavelength λ and the angle ϕ evaluated through full wave simulations. (b) Transmissivity T (ϕ) extracted from panel (a) at three different wavelengths where the mixture displays indefinite character.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R = ( cos φ 0 sin φ 0 1 0 sin φ 0 cos φ )
ɛ j ( e f f ) = [ 1 + f ( ɛ ( A g ) ɛ j ( L C ) ) ɛ j ( L C ) + ( 1 f ) N j ( ɛ ( A g ) ɛ j ( L C ) ) ] ɛ j ( L C ) ,
N j = ɛ j ( L C ) 2 0 + d s 1 ( 1 + s ɛ o ( L C ) ) 2 ( 1 + s ɛ e ( L C ) ) 1 ( 1 + s ɛ j ( L C ) ) .
k x 2 ɛ e ( e f f ) + k z 2 ɛ o ( e f f ) = k 0 2 ,
K ( φ ) = k 0 ɛ o ( e f f ) ɛ e ( e f f ) ɛ o ( e f f ) sin 2 φ + ɛ e ( e f f ) cos 2 φ ,

Metrics