Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Accurate quantification of photothermal heat originating from a plasmonic metasurface

Not Accessible

Your library or personal account may give you access

Abstract

Photothermal effect in plasmonic nanostructures (thermoplasmonic), as a nanoscale heater, has been widely used in biomedical technology and optoelectronic devices. However, the big challenge in this effect is the quantitative characterization of the delivered heat to the surrounding environment. In this work, a plasmonic metasurface (as a nanoheater), and a Fabry–Perot (FP) cavity including liquid crystal (as a thermometer element) are integrated. The metasurface is manufactured through a bottom-up deposition method and has a near perfect absorption that causes an efficient temperature rising in the photothermal experiment under a low intensity of irradiation ($0.25\; {\rm W}/{{\rm cm}^2}$). Generated heat from the metasurface dissipates to the liquid crystal (LC) layer and makes a spectral shift of FP modes. More than 50°C temperature elevation with accuracy of 1.3°C are measured based on the consistency of anisotropic thermo-tropic data of the LC and a spectral shift of FP modes. The calculated figure of merit (FoM) of the constructed device, which indicates the temperature sensitivity, is 22. The FoM is four times more than other reported thermometry devices with broad spectral width. The device can be also used as an all-optical device to control the plasmonic resonance spectrum.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Polymer dispersed liquid crystal-mediated active plasmonic mode with microsecond response time

Hossein Mehrzad, Ezeddin Mohajerani, Kristiaan Neyts, and Mohammad Mohammadimasoudi
Opt. Lett. 44(5) 1088-1091 (2019)

Photothermal switch of sub-microsecond response: a monolithic-integrated ring resonator and a metasurface absorber in silicon photonic crystals

Honghao Yu, Hong Wang, Qing Xiong, Junjie Mei, Ye Zhang, Yi Wang, Jianjun Lai, and Changhong Chen
Opt. Lett. 45(7) 1806-1809 (2020)

Chiral plasmonic metasurface absorbers in the mid-infrared wavelength range

Md. Shamim Mahmud, Daniel Rosenmann, David A. Czaplewski, Jie Gao, and Xiaodong Yang
Opt. Lett. 45(19) 5372-5375 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.