Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

In situ laser measurement of oxygen concentration and flue gas temperature utilizing chemical reaction kinetics

Not Accessible

Your library or personal account may give you access

Abstract

Combustion research requires detailed localized information on the dynamic combustion conditions to improve the accuracy of the simulations and, hence, improve the performance of the combustion processes. We have applied chemical reaction kinetics of potassium to measure the local temperature and O2 concentration in flue gas. An excess of free atomic potassium is created in the measurement volume by a photofragmenting precursor molecule such as potassium chloride or KOH which are widely released from solid fuels. The decay of the induced potassium concentration is followed with an absorption measurement using a narrow-linewidth diode laser. The temperature and O2 concentration are solved from the decay curve features using equations obtained from calibration measurements in a temperature range of 800°C–1000°C and in O2 concentrations of 0.1%–21%. The local flue gas temperature and O2 concentration were recorded in real time during devolatilization, char burning, and ash cooking phases of combustion in a single-particle reactor with a 5 Hz repetition rate. The method can be further extended to other target species and applications where the chemical dynamics can be disturbed with photofragmentation.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser

Rui Wang, Zining Yang, Hongyan Wang, and Xiaojun Xu
Opt. Lett. 42(4) 667-670 (2017)

Laser Stark spectrometer for the measurement of ammonia in flue gas

Adriaan J. L. Verhage, Rudy A. Rooth, and Leo W. Wouters
Appl. Opt. 32(30) 5856-5866 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.