Abstract

In this erratum, we correct the mistakes in Eqs. (2) and (2a) in Opt. Lett. 45, 443 (2020). [CrossRef]  

© 2020 Optical Society of America

Equations (2) and (2a) in Ref. [1] should read

$${I_{{\rm TE}}}(x) = {I_0}\left[ {1 + \cos \left(\frac{{4\pi {n_1}\sin {\theta _1}}}{\lambda }x \right)} \right]$$
and
$${I_{{\rm TM}}}(x) = {I_0}\left[ {1 + \cos (2{\theta _1})\cos \left(\frac{{4\pi {n_1}\sin {\theta _1}}}{\lambda }x \right)} \right],$$
respectively. Equation (3), which we use to calculate the peak intensity in the interference pattern for the TM polarization, is not affected by the mistakes in Eqs. (2) and (2a), and remains valid.

REFERENCE

1. N. Abdukerim, D. Grobnic, C. Hnatovsky, and S. J. Mihailov, Opt. Lett. 45, 443 (2020). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. Abdukerim, D. Grobnic, C. Hnatovsky, and S. J. Mihailov, Opt. Lett. 45, 443 (2020).
    [Crossref]

2020 (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I T E ( x ) = I 0 [ 1 + cos ( 4 π n 1 sin θ 1 λ x ) ]
I T M ( x ) = I 0 [ 1 + cos ( 2 θ 1 ) cos ( 4 π n 1 sin θ 1 λ x ) ] ,

Metrics