Abstract

In this Letter, we theoretically describe photoacoustic signal generation of molecules, for which triplet relaxation can be neglected, by considering the excited state lifetime, the fluorescence quantum yield, and the fast vibrational relaxation. We show that the phase response of the photoacoustic signal can be exploited to determine the excited state lifetime of dark molecules. For fluorescent molecules, the phase response can be used to determine the fluorescence quantum yield directly without the need of reference samples.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

The photoacoustic (PA) effect, also called optoacoustic effect, was discovered in 1880 [1] and describes the generation of acoustic waves following light absorption of a material. In general, if light is absorbed by a molecule, it undergoes a transition from the ground state into an excited state. Thermal relaxation of the excited molecule leads to an increase in local pressure and ultimately to an acoustic wave. Theoretical work on PA signal generation (see, e.g., Refs. [2,3]) serves for a better understanding of the measurement results and allows to design efficient setups. However, the exact events occurring during excitation, that is, electronic excitation and relaxation, are usually neglected, and the heating function is often modeled as a Dirac impulse [4], that is, light absorption and heat generation are assumed to occur infinitely fast. This approximation is reasonable as long as fast relaxing materials are investigated but, in general, does not hold for molecules relaxing within nanoseconds or even longer. Currently, there is growing interest in the excited state lifetime, as it was found that the lifetime can be used as an alternative contrast mechanism instead of spectral information which requires multiwavelength excitation and spectral unmixing [5,6]. For determination of the excited state lifetimes, pump-probe methods have been employed [57].

In this Letter, we theoretically examine the transient behavior of molecules exhibiting just two singlet states (see Fig. 1). We consider the excited state lifetime, the fluorescence quantum yield, and fast vibrational relaxation to derive the frequency dependent amplitude and phase of the PA pressure. A similar formalism, which is restricted to purely nonradiative triplet state relaxation, was found by Keller et al. [8]. We will show that the phase response of the PA signal allows us to assess the excited state lifetime of nonfluorescent molecules, similar to fluorescence lifetime imaging (FLIM) for fluorescent molecules [9], without the need of pump-probe experiments. For molecules which additionally exhibit radiative relaxation, that is, fluorescence, the proposed method together with knowledge on the absorption and emission spectra allows the direct assessment of the fluorescence quantum yield. Material parameters, like the absorption cross section or the refractive index of the dye solution under investigation, have no influence on the evaluation. Also the method does not require comparison with a well characterized sample with known fluorescence quantum efficiency. This stands in contrast to today’s standard methods in which the overall fluorescence of the investigated sample is compared with a reference dye. In order to avoid the pitfalls of pure optical methods, determination of the fluorescence quantum yield using PA means was demonstrated, for example, in Ref. [10]. However, in the employed underlying theoretical models, the fluorescence lifetime and the vibrational energies were neglected [10].

 

Fig. 1. First, a photon with an energy Eexc=Ev0+Efl+Ev1 excites an electron from the ground state S0 into an excited state S1* (exc, blue). Second, the electron releases the energy Ev1 within several picoseconds (S1*S1, red wavy path). Third, the electron returns into the HOMO either radiatively (fl, green) or nonradiatively (th, red). Finally, the electron returns to the ground state S0 (red wavy path).

Download Full Size | PPT Slide | PDF

Figure 1 shows the Jablonski diagram of a molecule exhibiting two singlet states. A photon (exc, blue) excites an electron from the highest occupied molecular orbital’s (HOMO) ground state S0 into the excited state S1*. From S1* the electron relaxes to S1 [11], thereby releasing thermal energy (red wavy path in Fig. 1). For dye molecules, this vibrational relaxation usually happens on a timescale of 1 ps [12,13]. From S1, which is the ground state of the lowest unoccupied molecular orbital (LUMO), the electron can relax into the HOMO via radiative relaxation, that is, fluorescence (green solid path in Fig. 1), or via nonradiative relaxation, that is, thermal relaxation (red solid path in Fig. 1), with a relaxation time constant usually of several nanoseconds. Note that for fluorescence and for thermal relaxation, the electron can relax into any vibrational state S0* within the HOMO. This state is then emptied by fast vibrational relaxation to the ground state S0, releasing heat. As the latter relaxation happens very fast, in the case of nonradiative relaxation from S1, one can assume that the electron relaxes from S1 to S0 directly. Also in the case of fluorescence, relaxation from S0* to the ground state S0 contributes to the released heat. The released vibrational energy, Ev0, depends on the emitted photon energy Efl, namely, Ev0=ES1Efl, where ES1 denotes the energy difference between LUMO and HOMO (see Fig. 1). For PA measurements, in general, excitation of several thousand molecules is required in order that the pressure exceeds noise level [14,15]. Therefore, for calculation of the released energy, one can use the expectation values of Ev0 and Efl. The expectation value of the fluorescent photon energy Efl is given by

Efl=Ef(E)dEf(E)dE,
where f(E) is the fluorescence spectrum. In general, a PA signal is always generated, even if the molecule has a fluorescence quantum efficiency η of 1, that is, when every electron relaxes via a radiative process. This is because the fluorescent relaxation occurs from S1 to S0*. Nonradiative relaxation from S1* to S1 and from S0* to S0, however, contributes to the PA signal. As a consequence, also typical fluorescent dyes, which possess high fluorescence quantum yields η provide reasonable PA signals [16]. In the following, we assume that excitation occurs only from S0, that is, no re-excitation from S0*, S1, or S1* occurs. For an excitation laser pulse that is much shorter than the excited state lifetime τ, we find the fluorescence f(t), given in numbers of photons, to follow the well-known exponential decay:
f(t)=NS1,0ητet/τΘ(t),
with NS1,0 being the population of state S1 right after the excitation pulse, that is, at t=0, Θ being the Heaviside function, and τ being the excited state lifetime. In this Letter, we are particularly interested in the frequency response of chromophores, as we will see that most information can be obtained by analyzing the phase. In the frequency domain, Eq. (2) corresponds to
f(ω)=NS1,0η2π11+iωτ,
representing the behavior of a low pass filter.

In Fig. 2(a) the solid green curve represents the fluorescence amplitude over frequency, calculated for an excited state lifetime of τ=5  ns. The overall heat dissipation from the chromophores follows a similar tendency [black solid curve in Fig. 2(a)]. However, in contrast to fluorescence, for high frequencies the heat dissipation does not approach 0. The reason is the fast vibrational relaxation from S1* to S1 (blue curve), which is very much faster than the relaxation from S1 to S0*. Therefore, this energy contribution can be approximated by a Dirac delta function in time. We compared the Dirac delta approximation with a model considering also the vibrational relaxation times and found that the approximation holds as long as the S1* to S1 relaxation time is around a factor 100 below the excited state lifetime τ. Altogether, the heating function h(t) can be described by

h(t)=NS1,0δ(t)Ev1+NS1,0τet/τEfl,v0,
with δ(t) being the Dirac delta function and Efl,v0=(1η)Efl+Ev0 the energy that is thermalized via relaxation to the HOMO plus the subsequent vibrational relaxation to the ground state. The factor (1η) describes that fluorescence does not participate in heat generation. The energy Ev0 contributes to the heating function in any case. Note that the excited state lifetime τ is the same for radiative and nonradiative processes, as the lifetime describes how long an electron stays in the excited state, independent of the following relaxation process.

 

Fig. 2. (a) Dissipated energy amplitude E as a function of frequency f for the different relaxation paths. The curves are normalized to their respective released energies. The fluorescence signal (Fl, bold green) and heat released via relaxation from S1 (Hfl,v0, red) behave similarly, as both share the same time constant τ. The overall heating function (bold black) does not go to zero for high frequencies, because of the S1*S1 vibrational relaxation contribution (Hv1, blue). (b) The PA pressure amplitude p is proportional to the time derivative of the heating function. The contribution of the S1*S1 relaxation (pv1, blue) increases linearly with frequency; relaxation from S1 (red, pfl,v0) shows a high-pass-like behavior. The bold black line illustrates the overall generated pressure.

Download Full Size | PPT Slide | PDF

For the PA signal, not the heating function h(t), that is, the generated heat, but rather the generated pressure p is relevant, which is given by the time derivative of the heating function [3]. The PA pressure p as a function of the angular frequency therefore is

p(ω)(iωEv1+iω1+iωτEfl,v0)NS1,02π.
For the calculation, we utilized that the time derivative in the Fourier domain corresponds to a multiplication with iω. In an experiment, the PA frequency behavior can be obtained by a Fourier transform of the recorded time-domain signals or by directly measuring the frequency behavior using frequency domain photoacoustics [17]. The PA pressure shows a high-pass like behavior [see Fig. 2(b)], with the amplitude being
|p(ω)|=(ω1+τ2ω2Efl,v0+ωEv1)NS1,02π,
and the phase following
ϕ(ω)=arctan(Ev1+Efl,v0+Ev1·τ2ω2Efl,v0·τω).
The PA pressure amplitude as a function of excitation frequency f is plotted in Fig. 2(b). The contribution from the vibrational relaxation is pv1. As its timescale lies in the picosecond range, it is linearly proportional to the excitation frequency in the displayed frequency region. Efl,v0 is the PA contribution from S1 to S0. It shows a high-pass behavior. The solid black line in Fig. 2(b) is the overall generated pressure. The curves were calculated according to an Atto 390 dye excited with a wavelength of 405 nm, that is, an excitation photon energy Eexc=3.06  eV, LUMO lifetime τ=5  ns, fluorescence quantum yield η=0.9, ES1=2.86  eV, Efl=2.51  eV, from which we derive Ev1=0.2  eV and Ev0=0.35  eV [18]. Note that the energy released via fluorescence in Fig. 2(a) is not nine times as high as the thermally released energy, as one could assume from the quantum yield of 0.9, as vibrational relaxation within the HOMO always contributes to the thermal signal, independent of the preceding relaxation.

In Fig. 3(a) the PA amplitude is plotted versus frequency for various values of the fluorescence quantum yield η. Lower quantum yields lead to higher signals. In Fig. 3(b) the corresponding PA phase is plotted according to Eq. (7). The phase response has a minimum at a frequency fmin. With increasing fluorescence quantum yield fmin shifts to lower frequencies and additionally the observed phase minimum increases. In Fig. 3(c) the PA amplitude is plotted for different values of the excited state lifetime. The dashed curve symbolizes the contribution of the S1*S1 relaxation. Shorter relaxation times lead to higher PA signals. For long relaxation times, the PA signal is dominated by the vibrational relaxation in the LUMO. In Fig. 3(d) the corresponding PA phase is shown. With increasing lifetime, the frequency fmin shifts to lower frequencies, while the minimum phase stays constant.

 

Fig. 3. (a) PA pressure amplitude p as a function of frequency [Eq. (6)] for different fluorescence quantum efficiencies η and τ=5  ns. The corresponding PA phase response according to Eq. (7) is shown in (b). (c) PA pressure amplitude for different excited state lifetimes τ and η=0.9. The dashed line shows the contribution of the vibrational relaxation within the excited state. (d) PA phase ϕ corresponding to (c).

Download Full Size | PPT Slide | PDF

From Eq. (7) we can get analytic expressions for the minimum phase ϕmin and for the angular frequency where the phase becomes minimal, ωmin=2πfmin:

ϕmin=arctan(2·Ev1+Efl,v0Ev1Efl,v0)ωmin=Ev1+Efl,v0τ2·Ev1=Ev1+(1η)Efl+Ev0τ2·Ev1.
Curve fitting of a measured PA response could be used to reveal the physical parameters η and τ of the chromophore. However, for a nonfluorescent molecule, that is, η=0, Eq. (8) simplifies. For η=0 the sum of Ev1 and Efl,v0 simply resembles the energy of the excitation photon Eexc which is usually well known in an experiment. By employing the relation for ϕmin of Eq. (8) the energy level of S1 can be directly calculated by
ES1=21+tan2(ϕmin)1tan2(ϕmin)·Eexc.
From the minimum phase ϕmin, one can directly calculate the energy gap between HOMO and LUMO. For example, the blue curve of Fig. 3(b), which was calculated for η=0, has a ϕmin of 0.5 rad. According to Eq. (9) the energy difference between S0 and S1 is 0.935·Eexc, which corresponds to 2.86 eV. Note that Eq. (9) can only be applied to dark molecules, that is, η=0.

Now knowing the energy gap ES1, one can directly calculate the relaxation time τ by making use of the relation for ωmin of Eq. (8),

τ=Eexc(2πfmin)2(EexcES1),
which results in 5 ns.

In case the molecule shows fluorescence, that is, η>0, one can measure the excited state lifetime τ with time-resolved fluorescence measurements (see, e.g., Ref. [19]). From a spectroscopic measurement, one can additionally assess ES1 from the point of intersection between absorption and emission spectrum, which is 2.86 eV for Atto 390. The energy Efl can be calculated from the emission spectrum with Eq. (1). In the expression for ωmin of Eq. (8) now all values besides the quantum efficiency η are known. By determining the frequency where the phase becomes minimum, fmin, one can calculate the fluorescence quantum efficiency:

η=Eexc(2πfminτ)2(EexcES1)Efl.
Therefore, if triplet relaxation is negligible, the fluorescence quantum yield of fluorescent molecules can be determined by the absorption and emission spectra plus the behavior of the PA phase. For this evaluation, neither the absorption cross section nor the refractive index of the dye solution under investigation have to be known, nor is a comparison with a reference dye required. The proposed concept therefore differs from today’s existing methods for evaluating the relative or absolute fluorescence quantum yield [2022]. Today, the gold standard is to compare the fluorescence intensity of the investigated sample with a well characterized standard sample with known η (see, e.g., Refs. [22,23]). As the measured fluorescence intensity depends on various parameters, such as, absorption coefficient, refractive index of the sample, and so on, the determination of the quantum yield is error-prone [23].

If triplet relaxation cannot be neglected, the analytic equations given in this Letter cannot be applied. Instead the differential equation system describing the molecule including the triplet state can be solved numerically. Curve fitting can then be applied to find the quantum yield and the singlet and triplet relaxation times. We note that all graphs shown in this Letter were calculated for a point-like PA source at the position of ultrasound generation. In an experiment, attenuation of ultrasound and frequency dependence of the transducer’s sensitivity will significantly change the behavior of measured PA amplitude and phase [24]. For a quantitative evaluation, the measurement system has therefore to be calibrated. Calibration could be done by measuring a sample exhibiting only fast acoustic transients, for instance, a metal film. A similar procedure is used in FLIM, where second harmonic generation is used for calibration. The approximation of a point-like source is valid only for μm thick samples exposed with a tightly focused laser beam, such as in the case of optical-resolution PA microscopy [17,25,26]. If larger volumes are excited, the frequency responses derived in this Letter have to be multiplied with the frequency response of the excited volume [24].

In summary, we theoretically calculated the PA response of point-like sources by considering the excited state lifetime, the fluorescence quantum yield, and the energy levels of molecules exhibiting only two singlet states. We found that under certain conditions, such as no significant triplet relaxation, for dark molecules it is possible to determine the bandgap energy and the excited state lifetime by measuring the phase of the PA response. Further, we found that for fluorescent molecules for which the absorption and emission spectra are known, the phase of the PA response allows us to determine the fluorescence quantum yield. In the PA experiments, just a single excitation wavelength has to be used. Therefore, no optical parametric oscillators, tunable lasers, or multiple lasers with different wavelengths are required for performing the PA experiments. The obtained results do not depend on the comparison with standard samples for which the absorption cross section or the refractive index may introduce uncertainties. We therefore believe that the proposed method could become an alternative to determine the fluorescence quantum yield in the future.

Funding

Austrian Science Fund (FWF) (P27839-N36); European Regional Development Fund (ERDF) (IWB2020:MiCi); Innovative Upper Austria 2020; Federal Government of Upper Austria.

REFERENCES

1. A. G. Bell, Am. J. Sci. s3-20, 305 (1880). [CrossRef]  

2. C. G. A. Hoelen and F. F. M. de Mul, J. Acoust. Soc. Am. 106, 695 (1999). [CrossRef]  

3. I. G. Calasso, W. Craig, and G. J. Diebold, Phys. Rev. Lett. 86, 3550 (2001). [CrossRef]  

4. L. V. Wang, IEEE J. Sel. Top. Quantum Electron. 14, 171 (2008). [CrossRef]  

5. J. Märk, F.-J. Schmitt, and J. Laufer, J. Opt. 18, 054009 (2016). [CrossRef]  

6. A. Forbrich, P. Shao, W. Shi, and R. J. Zemp, J. Opt. 18, 124001 (2016). [CrossRef]  

7. L. J. Rothberg, M. Bernstein, and K. S. Peters, J. Chem. Phys. 79, 2569 (1983). [CrossRef]  

8. W. Keller, W. Schubert, R. Germer, and E. Strauss, J. Phys. Colloq. 44, C6-397 (1983). [CrossRef]  

9. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Anal. Biochem. 202, 316 (1992). [CrossRef]  

10. C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012). [CrossRef]  

11. M. Kasha, Discuss. Faraday Soc. 9, 14 (1950). [CrossRef]  

12. D. Reiser and A. Laubereau, Appl. Phys. B 27, 115 (1982). [CrossRef]  

13. P. Troeger, C.-H. Liu, and A. Laubereau, Time Resolved Vibrational Spectroscopy, Springer Proceedings in Physics (Springer, 1985), pp. 62–66.

14. A. M. Winkler, K. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 097003 (2013). [CrossRef]  

15. J. Yao and L. V. Wang, Photoacoustics 2, 87 (2014). [CrossRef]  

16. J. Märk, F.-J. Schmitt, C. Theiss, H. Dortay, T. Friedrich, and J. Laufer, Biomed. Opt. Express 6, 2522 (2015). [CrossRef]  

17. G. Langer, B. Buchegger, J. Jacak, T. A. Klar, and T. Berer, Biomed. Opt. Express 7, 2692 (2016). [CrossRef]  

18. ATTO-TEC GmbH, “ATTO-TEC fluorescent labels and dyes product catalogue 2016/2018” (2016).

19. P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao, Rev. Sci. Instrum. 70, 1535 (1999). [CrossRef]  

20. J. Olmsted, J. Phys. Chem. 83, 2581 (1979). [CrossRef]  

21. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009). [CrossRef]  

22. A. M. Brouwer, Pure Appl. Chem. 83, 2213 (2011). [CrossRef]  

23. S. Fery-Forgues and D. Lavabre, J. Chem. Educ. 76, 1260 (1999). [CrossRef]  

24. G. Langer and T. Berer, Proc. SPIE 10494, 1049465 (2018). [CrossRef]  

25. C. Zhang, K. Maslov, and L. V. Wang, Opt. Lett. 35, 3195 (2010). [CrossRef]  

26. E. M. Strohm, M. J. Moore, and M. C. Kolios, Photoacoustics 4, 36 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. G. Bell, Am. J. Sci. s3-20, 305 (1880).
    [Crossref]
  2. C. G. A. Hoelen and F. F. M. de Mul, J. Acoust. Soc. Am. 106, 695 (1999).
    [Crossref]
  3. I. G. Calasso, W. Craig, and G. J. Diebold, Phys. Rev. Lett. 86, 3550 (2001).
    [Crossref]
  4. L. V. Wang, IEEE J. Sel. Top. Quantum Electron. 14, 171 (2008).
    [Crossref]
  5. J. Märk, F.-J. Schmitt, and J. Laufer, J. Opt. 18, 054009 (2016).
    [Crossref]
  6. A. Forbrich, P. Shao, W. Shi, and R. J. Zemp, J. Opt. 18, 124001 (2016).
    [Crossref]
  7. L. J. Rothberg, M. Bernstein, and K. S. Peters, J. Chem. Phys. 79, 2569 (1983).
    [Crossref]
  8. W. Keller, W. Schubert, R. Germer, and E. Strauss, J. Phys. Colloq. 44, C6-397 (1983).
    [Crossref]
  9. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Anal. Biochem. 202, 316 (1992).
    [Crossref]
  10. C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012).
    [Crossref]
  11. M. Kasha, Discuss. Faraday Soc. 9, 14 (1950).
    [Crossref]
  12. D. Reiser and A. Laubereau, Appl. Phys. B 27, 115 (1982).
    [Crossref]
  13. P. Troeger, C.-H. Liu, and A. Laubereau, Time Resolved Vibrational Spectroscopy, Springer Proceedings in Physics (Springer, 1985), pp. 62–66.
  14. A. M. Winkler, K. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 097003 (2013).
    [Crossref]
  15. J. Yao and L. V. Wang, Photoacoustics 2, 87 (2014).
    [Crossref]
  16. J. Märk, F.-J. Schmitt, C. Theiss, H. Dortay, T. Friedrich, and J. Laufer, Biomed. Opt. Express 6, 2522 (2015).
    [Crossref]
  17. G. Langer, B. Buchegger, J. Jacak, T. A. Klar, and T. Berer, Biomed. Opt. Express 7, 2692 (2016).
    [Crossref]
  18. ATTO-TEC GmbH, “ATTO-TEC fluorescent labels and dyes product catalogue 2016/2018” (2016).
  19. P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao, Rev. Sci. Instrum. 70, 1535 (1999).
    [Crossref]
  20. J. Olmsted, J. Phys. Chem. 83, 2581 (1979).
    [Crossref]
  21. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
    [Crossref]
  22. A. M. Brouwer, Pure Appl. Chem. 83, 2213 (2011).
    [Crossref]
  23. S. Fery-Forgues and D. Lavabre, J. Chem. Educ. 76, 1260 (1999).
    [Crossref]
  24. G. Langer and T. Berer, Proc. SPIE 10494, 1049465 (2018).
    [Crossref]
  25. C. Zhang, K. Maslov, and L. V. Wang, Opt. Lett. 35, 3195 (2010).
    [Crossref]
  26. E. M. Strohm, M. J. Moore, and M. C. Kolios, Photoacoustics 4, 36 (2016).
    [Crossref]

2018 (1)

G. Langer and T. Berer, Proc. SPIE 10494, 1049465 (2018).
[Crossref]

2016 (4)

J. Märk, F.-J. Schmitt, and J. Laufer, J. Opt. 18, 054009 (2016).
[Crossref]

G. Langer, B. Buchegger, J. Jacak, T. A. Klar, and T. Berer, Biomed. Opt. Express 7, 2692 (2016).
[Crossref]

E. M. Strohm, M. J. Moore, and M. C. Kolios, Photoacoustics 4, 36 (2016).
[Crossref]

A. Forbrich, P. Shao, W. Shi, and R. J. Zemp, J. Opt. 18, 124001 (2016).
[Crossref]

2015 (1)

2014 (1)

J. Yao and L. V. Wang, Photoacoustics 2, 87 (2014).
[Crossref]

2013 (1)

A. M. Winkler, K. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 097003 (2013).
[Crossref]

2012 (1)

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012).
[Crossref]

2011 (1)

A. M. Brouwer, Pure Appl. Chem. 83, 2213 (2011).
[Crossref]

2010 (1)

2009 (1)

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

2008 (1)

L. V. Wang, IEEE J. Sel. Top. Quantum Electron. 14, 171 (2008).
[Crossref]

2001 (1)

I. G. Calasso, W. Craig, and G. J. Diebold, Phys. Rev. Lett. 86, 3550 (2001).
[Crossref]

1999 (3)

S. Fery-Forgues and D. Lavabre, J. Chem. Educ. 76, 1260 (1999).
[Crossref]

C. G. A. Hoelen and F. F. M. de Mul, J. Acoust. Soc. Am. 106, 695 (1999).
[Crossref]

P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao, Rev. Sci. Instrum. 70, 1535 (1999).
[Crossref]

1992 (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Anal. Biochem. 202, 316 (1992).
[Crossref]

1983 (2)

L. J. Rothberg, M. Bernstein, and K. S. Peters, J. Chem. Phys. 79, 2569 (1983).
[Crossref]

W. Keller, W. Schubert, R. Germer, and E. Strauss, J. Phys. Colloq. 44, C6-397 (1983).
[Crossref]

1982 (1)

D. Reiser and A. Laubereau, Appl. Phys. B 27, 115 (1982).
[Crossref]

1979 (1)

J. Olmsted, J. Phys. Chem. 83, 2581 (1979).
[Crossref]

1950 (1)

M. Kasha, Discuss. Faraday Soc. 9, 14 (1950).
[Crossref]

1880 (1)

A. G. Bell, Am. J. Sci. s3-20, 305 (1880).
[Crossref]

Bell, A. G.

A. G. Bell, Am. J. Sci. s3-20, 305 (1880).
[Crossref]

Berer, T.

Berndt, K. W.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Anal. Biochem. 202, 316 (1992).
[Crossref]

Bernstein, M.

L. J. Rothberg, M. Bernstein, and K. S. Peters, J. Chem. Phys. 79, 2569 (1983).
[Crossref]

Brouwer, A. M.

A. M. Brouwer, Pure Appl. Chem. 83, 2213 (2011).
[Crossref]

Buchegger, B.

Calasso, I. G.

I. G. Calasso, W. Craig, and G. J. Diebold, Phys. Rev. Lett. 86, 3550 (2001).
[Crossref]

Carter, G. M.

P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao, Rev. Sci. Instrum. 70, 1535 (1999).
[Crossref]

Craig, W.

I. G. Calasso, W. Craig, and G. J. Diebold, Phys. Rev. Lett. 86, 3550 (2001).
[Crossref]

de Mul, F. F. M.

C. G. A. Hoelen and F. F. M. de Mul, J. Acoust. Soc. Am. 106, 695 (1999).
[Crossref]

Diebold, G. J.

I. G. Calasso, W. Craig, and G. J. Diebold, Phys. Rev. Lett. 86, 3550 (2001).
[Crossref]

Dortay, H.

Fery-Forgues, S.

S. Fery-Forgues and D. Lavabre, J. Chem. Educ. 76, 1260 (1999).
[Crossref]

Forbrich, A.

A. Forbrich, P. Shao, W. Shi, and R. J. Zemp, J. Opt. 18, 124001 (2016).
[Crossref]

Friedrich, T.

Genger, U. R.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012).
[Crossref]

Germer, R.

W. Keller, W. Schubert, R. Germer, and E. Strauss, J. Phys. Colloq. 44, C6-397 (1983).
[Crossref]

González, M. G.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012).
[Crossref]

Haisch, C.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012).
[Crossref]

Harms, P.

P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao, Rev. Sci. Instrum. 70, 1535 (1999).
[Crossref]

Hoelen, C. G. A.

C. G. A. Hoelen and F. F. M. de Mul, J. Acoust. Soc. Am. 106, 695 (1999).
[Crossref]

Ishida, H.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Jacak, J.

Johnson, M.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Anal. Biochem. 202, 316 (1992).
[Crossref]

Kaneko, S.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Kasha, M.

M. Kasha, Discuss. Faraday Soc. 9, 14 (1950).
[Crossref]

Keller, W.

W. Keller, W. Schubert, R. Germer, and E. Strauss, J. Phys. Colloq. 44, C6-397 (1983).
[Crossref]

Klar, T. A.

Kobayashi, A.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Kolios, M. C.

E. M. Strohm, M. J. Moore, and M. C. Kolios, Photoacoustics 4, 36 (2016).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Anal. Biochem. 202, 316 (1992).
[Crossref]

Langer, G.

Laubereau, A.

D. Reiser and A. Laubereau, Appl. Phys. B 27, 115 (1982).
[Crossref]

P. Troeger, C.-H. Liu, and A. Laubereau, Time Resolved Vibrational Spectroscopy, Springer Proceedings in Physics (Springer, 1985), pp. 62–66.

Laufer, J.

Lavabre, D.

S. Fery-Forgues and D. Lavabre, J. Chem. Educ. 76, 1260 (1999).
[Crossref]

Liu, C.-H.

P. Troeger, C.-H. Liu, and A. Laubereau, Time Resolved Vibrational Spectroscopy, Springer Proceedings in Physics (Springer, 1985), pp. 62–66.

Märk, J.

Maslov, K.

A. M. Winkler, K. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 097003 (2013).
[Crossref]

C. Zhang, K. Maslov, and L. V. Wang, Opt. Lett. 35, 3195 (2010).
[Crossref]

Moore, M. J.

E. M. Strohm, M. J. Moore, and M. C. Kolios, Photoacoustics 4, 36 (2016).
[Crossref]

Niessner, R.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012).
[Crossref]

Nowaczyk, K.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Anal. Biochem. 202, 316 (1992).
[Crossref]

Oishi, S.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Olmsted, J.

J. Olmsted, J. Phys. Chem. 83, 2581 (1979).
[Crossref]

Panne, U.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012).
[Crossref]

Peters, K. S.

L. J. Rothberg, M. Bernstein, and K. S. Peters, J. Chem. Phys. 79, 2569 (1983).
[Crossref]

Ram, N.

P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao, Rev. Sci. Instrum. 70, 1535 (1999).
[Crossref]

Rao, G.

P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao, Rev. Sci. Instrum. 70, 1535 (1999).
[Crossref]

Reiser, D.

D. Reiser and A. Laubereau, Appl. Phys. B 27, 115 (1982).
[Crossref]

Rothberg, L. J.

L. J. Rothberg, M. Bernstein, and K. S. Peters, J. Chem. Phys. 79, 2569 (1983).
[Crossref]

Schmitt, F.-J.

Schubert, W.

W. Keller, W. Schubert, R. Germer, and E. Strauss, J. Phys. Colloq. 44, C6-397 (1983).
[Crossref]

Shao, P.

A. Forbrich, P. Shao, W. Shi, and R. J. Zemp, J. Opt. 18, 124001 (2016).
[Crossref]

Shi, W.

A. Forbrich, P. Shao, W. Shi, and R. J. Zemp, J. Opt. 18, 124001 (2016).
[Crossref]

Shiina, Y.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Sipior, J.

P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao, Rev. Sci. Instrum. 70, 1535 (1999).
[Crossref]

Strauss, E.

W. Keller, W. Schubert, R. Germer, and E. Strauss, J. Phys. Colloq. 44, C6-397 (1983).
[Crossref]

Strohm, E. M.

E. M. Strohm, M. J. Moore, and M. C. Kolios, Photoacoustics 4, 36 (2016).
[Crossref]

Suzuki, K.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Szmacinski, H.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Anal. Biochem. 202, 316 (1992).
[Crossref]

Takehira, K.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Theiss, C.

Tobita, S.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Troeger, P.

P. Troeger, C.-H. Liu, and A. Laubereau, Time Resolved Vibrational Spectroscopy, Springer Proceedings in Physics (Springer, 1985), pp. 62–66.

Wang, L. V.

J. Yao and L. V. Wang, Photoacoustics 2, 87 (2014).
[Crossref]

A. M. Winkler, K. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 097003 (2013).
[Crossref]

C. Zhang, K. Maslov, and L. V. Wang, Opt. Lett. 35, 3195 (2010).
[Crossref]

L. V. Wang, IEEE J. Sel. Top. Quantum Electron. 14, 171 (2008).
[Crossref]

Winkler, A. M.

A. M. Winkler, K. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 097003 (2013).
[Crossref]

Würth, C.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012).
[Crossref]

Yao, J.

J. Yao and L. V. Wang, Photoacoustics 2, 87 (2014).
[Crossref]

Yoshihara, T.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Zemp, R. J.

A. Forbrich, P. Shao, W. Shi, and R. J. Zemp, J. Opt. 18, 124001 (2016).
[Crossref]

Zhang, C.

Am. J. Sci. (1)

A. G. Bell, Am. J. Sci. s3-20, 305 (1880).
[Crossref]

Anal. Biochem. (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Anal. Biochem. 202, 316 (1992).
[Crossref]

Appl. Phys. B (1)

D. Reiser and A. Laubereau, Appl. Phys. B 27, 115 (1982).
[Crossref]

Biomed. Opt. Express (2)

Discuss. Faraday Soc. (1)

M. Kasha, Discuss. Faraday Soc. 9, 14 (1950).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. V. Wang, IEEE J. Sel. Top. Quantum Electron. 14, 171 (2008).
[Crossref]

J. Acoust. Soc. Am. (1)

C. G. A. Hoelen and F. F. M. de Mul, J. Acoust. Soc. Am. 106, 695 (1999).
[Crossref]

J. Biomed. Opt. (1)

A. M. Winkler, K. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 097003 (2013).
[Crossref]

J. Chem. Educ. (1)

S. Fery-Forgues and D. Lavabre, J. Chem. Educ. 76, 1260 (1999).
[Crossref]

J. Chem. Phys. (1)

L. J. Rothberg, M. Bernstein, and K. S. Peters, J. Chem. Phys. 79, 2569 (1983).
[Crossref]

J. Opt. (2)

J. Märk, F.-J. Schmitt, and J. Laufer, J. Opt. 18, 054009 (2016).
[Crossref]

A. Forbrich, P. Shao, W. Shi, and R. J. Zemp, J. Opt. 18, 124001 (2016).
[Crossref]

J. Phys. Chem. (1)

J. Olmsted, J. Phys. Chem. 83, 2581 (1979).
[Crossref]

J. Phys. Colloq. (1)

W. Keller, W. Schubert, R. Germer, and E. Strauss, J. Phys. Colloq. 44, C6-397 (1983).
[Crossref]

Opt. Lett. (1)

Photoacoustics (2)

E. M. Strohm, M. J. Moore, and M. C. Kolios, Photoacoustics 4, 36 (2016).
[Crossref]

J. Yao and L. V. Wang, Photoacoustics 2, 87 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (1)

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, Phys. Chem. Chem. Phys. 11, 9850 (2009).
[Crossref]

Phys. Rev. Lett. (1)

I. G. Calasso, W. Craig, and G. J. Diebold, Phys. Rev. Lett. 86, 3550 (2001).
[Crossref]

Proc. SPIE (1)

G. Langer and T. Berer, Proc. SPIE 10494, 1049465 (2018).
[Crossref]

Pure Appl. Chem. (1)

A. M. Brouwer, Pure Appl. Chem. 83, 2213 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao, Rev. Sci. Instrum. 70, 1535 (1999).
[Crossref]

Talanta (1)

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, Talanta 90, 30 (2012).
[Crossref]

Other (2)

ATTO-TEC GmbH, “ATTO-TEC fluorescent labels and dyes product catalogue 2016/2018” (2016).

P. Troeger, C.-H. Liu, and A. Laubereau, Time Resolved Vibrational Spectroscopy, Springer Proceedings in Physics (Springer, 1985), pp. 62–66.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. First, a photon with an energy E exc = E v 0 + E fl + E v 1 excites an electron from the ground state S 0 into an excited state S 1 * (exc, blue). Second, the electron releases the energy E v 1 within several picoseconds ( S 1 * S 1 , red wavy path). Third, the electron returns into the HOMO either radiatively (fl, green) or nonradiatively (th, red). Finally, the electron returns to the ground state S 0 (red wavy path).
Fig. 2.
Fig. 2. (a) Dissipated energy amplitude E as a function of frequency f for the different relaxation paths. The curves are normalized to their respective released energies. The fluorescence signal (Fl, bold green) and heat released via relaxation from S 1 ( H fl , v 0 , red) behave similarly, as both share the same time constant τ . The overall heating function (bold black) does not go to zero for high frequencies, because of the S 1 * S 1 vibrational relaxation contribution ( H v 1 , blue). (b) The PA pressure amplitude p is proportional to the time derivative of the heating function. The contribution of the S 1 * S 1 relaxation ( p v 1 , blue) increases linearly with frequency; relaxation from S 1 (red, p fl , v 0 ) shows a high-pass-like behavior. The bold black line illustrates the overall generated pressure.
Fig. 3.
Fig. 3. (a) PA pressure amplitude p as a function of frequency [Eq. (6)] for different fluorescence quantum efficiencies η and τ = 5    ns . The corresponding PA phase response according to Eq. (7) is shown in (b). (c) PA pressure amplitude for different excited state lifetimes τ and η = 0.9 . The dashed line shows the contribution of the vibrational relaxation within the excited state. (d) PA phase ϕ corresponding to (c).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E fl = E f ( E ) d E f ( E ) d E ,
f ( t ) = N S 1 , 0 η τ e t / τ Θ ( t ) ,
f ( ω ) = N S 1 , 0 η 2 π 1 1 + i ω τ ,
h ( t ) = N S 1 , 0 δ ( t ) E v 1 + N S 1 , 0 τ e t / τ E fl , v 0 ,
p ( ω ) ( i ω E v 1 + i ω 1 + i ω τ E fl , v 0 ) N S 1 , 0 2 π .
| p ( ω ) | = ( ω 1 + τ 2 ω 2 E fl , v 0 + ω E v 1 ) N S 1 , 0 2 π ,
ϕ ( ω ) = arctan ( E v 1 + E fl , v 0 + E v 1 · τ 2 ω 2 E fl , v 0 · τ ω ) .
ϕ min = arctan ( 2 · E v 1 + E fl , v 0 E v 1 E fl , v 0 ) ω min = E v 1 + E fl , v 0 τ 2 · E v 1 = E v 1 + ( 1 η ) E fl + E v 0 τ 2 · E v 1 .
E S 1 = 2 1 + tan 2 ( ϕ min ) 1 tan 2 ( ϕ min ) · E exc .
τ = E exc ( 2 π f min ) 2 ( E exc E S 1 ) ,
η = E exc ( 2 π f min τ ) 2 ( E exc E S 1 ) E fl .

Metrics