Abstract

We report visible continuous-wave laser emission at 636 nm from a praseodymium-doped fluorozirconate glass guided-wave chip laser. This ultra-fast laser inscribed gain chip is demonstrated to be a compact and integrated laser module. The laser module, pumped by 442 nm GaN laser diodes, generates >8  mW lasing output with a beam quality of Mxy21.15×1.1(±0.1). To the best of our knowledge, this is the first visible laser emission from a glass-based waveguide chip laser.

© 2017 Optical Society of America

The application space for visible lasers is evolving rapidly due to their use in various application fields, such as full color laser displays [1,2], laser imaging [3,4], on-chip wavelength-division multiplexing [5,6], and biological and chemical sensing [7,8]. Although frequency doubling is a common method [9,10] to achieve visible laser emission, diode-based laser technology [11] is progressively exploring new avenues to generate direct laser emission across the entire visible spectrum, with blue (InGaN) and red (AlGaInP) laser diodes being the most mature technology [12] to date.

Visible diode lasers are currently the preferred choice for continuous-wave applications due to their low-cost and ready availability, albeit with astigmatic and non-circular beam profiles. Commonly available infrared (IR) solid-state Q-switched lasers, such as Nd3+ (0.95, 1.1, and 1.3 μm), can be frequency doubled [10] to produce discrete wavelengths. Alternatively, tunable visible output can be produced by a more complex system based on optical parametric oscillators pumped by frequency tripled solid-state Nd3+ lasers. Thus, visible laser applications that require high peak power and short-pulse operation (e.g., <20  ns) are typically complex to operate with concomitant higher costs.

A less complex alternative for high beam quality visible laser emission is direct generation using the optically pumped rare-earth (RE) ion praseodymium (Pr3+) in a suitable host. Trivalent Pr3+ can generate laser emission in the red, orange, green, and blue spectral domains [13]. Direct generation in a RE ion has the advantage of energy storage and broad gain bandwidths, thus allowing tunable, Q-switched, and mode-locked laser operation in the visible spectral domain [1416].

Fluoride-based materials are preferred over other host materials, as they possess lower phonon energies and provide higher luminescent intensity without multiphoton relaxation [17]. To date, the only visible laser emission reported is in Pr3+-doped fluoride crystals [13,18,19] and fluorozirconate glass fibers [20]. Crystalline hosts are typically operated in a more traditional solid-state resonator or microchip configuration [21]. Fluorozirconate glasses, such as zirconium barium lithium aluminum sodium fluoride (ZBLAN), are transparent from the UV well into the mid-IR spectral domain, and a low phonon energy enhances the excited-state lifetimes [22]. In 2012, an ion-exchanged Pr3+:ZBLA glass waveguide was reported [23] that showed the amplification of laser light in the visible domain, but visible laser operation from the Pr3+:ZBLA glass waveguide was not reported, owing to the higher round-trip losses in the ion-exchanged waveguides and lower pump power.

Recently, we have achieved efficient laser operation of waveguide-based ZBLAN chip lasers in the near IR to mid-IR spectral domain. These chip lasers are based on the ultra-fast laser inscription (ULI) of depressed-cladding waveguides into bulk RE ion-doped ZBLAN chips [2427]. In contrast to laser emission in the IR domain, visible laser operation of Pr3+:ZBLAN is relatively challenging due to (1) a short upper-state lifetime (50  μs), (2) narrow absorption band of Pr3+ at 440  nm [Fig. 1(B)], and (3) multiple terminal laser levels [28] at 479 nm (P13H43), 523 nm (P13H53), 635 nm (P03F23), and 716 nm (P03F43), as shown in Fig. 1(A).

 

Fig. 1. (A) Schematic representation of the visible domain energy level diagram for Pr3+:ZBLAN glass and (B) the absorption spectrum (black dotted line) of the Pr3+:ZBLAN glass and the spectrum of the pump laser diode (PLD) at 442 nm (blue solid line). After initial excitation at 442 nm, the excited state (P23) can radiatively relax to the ground state (H43) via 479, 523, 635, and 716 nm transitions.

Download Full Size | PPT Slide | PDF

In this Letter, we report the first, to the best of our knowledge, planar, RE-doped waveguide laser operating in the visible region, specifically a Pr3+-doped guided-wave glass chip laser. This monolithic ULI waveguide laser, with a relatively large mode area (40 μm diameter mode; area 1×105  cm2), produces visible laser emission at 636 nm with >8  mW average power and a slightly multi-mode transverse profile with M2 value of 1.15×1.1(±0.1).

The glass chips are based on ULI depressed-cladding waveguides [27,2931], which are directly inscribed in the 0.5 mol. % Pr3+:ZBLAN glass substrate [32] by a commercially available frequency doubled ultra-fast laser system (λ=1064  nm, pulse width 280  fs, IMRA, DE0210). A bright-field microscope image of the end-face of one of the waveguides is shown in Fig. 2(B). The Pr3+:ZBLAN glass chip (length=13  mm) contained 12 waveguides with diameters ranging from 30 to 45 μm. The waveguides were inscribed 300  μm below the surface of the chip. A broadband visible anti-reflection (AR) coating was applied to the end-faces of the chip to reduce the Fresnel loss (refractive index 1.49). This broadband AR coating has three layers, namely Al2O3 (first layer), Ta2O5 (second layer), and MgF2 (third and final layer), respectively. The final MgF2 layer is sensitive to temperature and abrasion and showed visual evidence of degradation after the chips were diced. (Large AR coated glass “slabs” were diced into 12  mm×10  mm×3.1  mm chips. Wax bonding, T90C, was used during the dicing process, leading to coating damage.)

 

Fig. 2. Schematic representation of the experimental setup for visible laser emission. (A) Image of the collimated emission of the monolithic laser. (B) Bright-field microscope image of the laser-etched waveguide and (C) photo of the monolithic waveguide chip laser module. LD(1-2), pump laser diodes at 442 nm; L(1-2), aspheric lens; L(3-4), plano-convex lens; APP(1-2), anamorphic prism pair; M1, reflective mirror for the pump beam; PBSC, polarization beam splitter cube; IC, input coupler; Pr-ZBLAN Chip, Pr3+:ZBLAN waveguide chip; OC, output coupler; LPF, long pass filter; PM, power meter.

Download Full Size | PPT Slide | PDF

The experimental setup is shown in Fig. 2. The Pr3+:ZBLAN chip was pumped by two InGaAs diodes (Nichia NDB4116, P=80  mW, λ=442  nm), which were polarization combined by using a λ/2 wave plate (AHWP05M-600, Thorlabs) and a polarization cube beam splitter (PBS121, Thorlabs). The pump laser diodes (PLDs) have an elliptical beam profile that was circularized by using a combination of an aspheric lens (F=2.54  mm) and an anamorphic prism pair (PS879-A, Thorlabs).

The combined pump beams were coupled into the waveguide by a plano-convex lens (f=75  mm) through an input coupler (T442=95%, R635>99.5%). To achieve lasing operation at 636 nm, two different output couplers (OCs) were used, namely OC1:R635=97%, R442=25% and OC2:R635=95%, R442=25%. The ½ in. diameter input couplers and OCs are directly end-coupled to the chip and held in place by a UV curable adhesive (Norland Optical Adhesive 65, USA), as shown in Fig. 2(C). The laser output is collimated by using a plano-convex lens (f=45  mm). A long pass filter (FGL495S, Thorlabs) absorbs the residual 442 nm pump laser from the red lasing output. A near-field image of the collimated beam emitted from the Pr3+:ZBLAN waveguide laser is shown in Fig. 2(A). The collimated laser output at 636 nm is measured using a thermal absorbing power meter (PM100D, sensor S302C, Thorlabs).

As shown in Fig. 3, the lasing emission from the waveguide chip laser (waveguide diameter 40  μm) is measured for a range of incident pump powers for two different OCs, namely with transmission of 5% and 3% at 635 nm. Laser thresholds (Γ) of 55 and 52 mW were achieved for 5% and 3% OC with slope efficiencies (η) of 10% and 7%, respectively. The observed slope efficiencies of up to 10% at 636 nm lasing output are lower than fiber-based Pr3+:ZBLAN lasers [13,18,20], where slope efficiencies of 50% have been achieved. We can attribute our lower lasing performance to (1) thermally damaged AR coatings (2% reflection loss per surface at 633 nm), (2) relatively higher waveguide losses (0.37  dB/cm measured at 633 nm) in the laser-etched waveguides as compared to fiber-based (0.076  dB/cm, [33]) and fluoride-crystal-based (1% total internal loss, [19]) Pr3+ visible lasers, and (3) the un-optimized length of the waveguide as the gain medium [28]. Further investigations to achieve higher lasing efficiency with improved AR coatings, different chip lengths, improved laser-etched waveguides, and higher pump powers are under consideration.

 

Fig. 3. Slope efficiency measurements at 5% and 3% OC. The experimental data at 5% and 3% OC is represented by circles (black) and squares (red). The slope efficiencies are calculated by using a line of best fit through the experimental data. The solid line (black) is the 5% OC giving a slope efficiency of 10%, and the dotted line (red) is for 3% OC with a slope efficiency of 7%. The estimated lasing threshold for 5% and 3% OC is 55 and 52 mW, respectively.

Download Full Size | PPT Slide | PDF

The spectrum of the lasing output, as shown in Fig. 4(A) (solid black line), is measured by an optical spectrum analyzer (OSA, Ando AQ6315E) and referenced to a HeNe laser [Fig. 4(A), red dotted line]. This free-running waveguide laser module generates 636 nm (solid line) emission with a measured spectral full width at half-maximum (FWHM) of 0.6  nm (time averaged, characteristic of many longitudinal modes reaching threshold). For reference, the measured spectral output of a HeNe laser (dotted line) is also shown with a spectral FWHM of 0.1  nm, which signifies the resolution of the OSA. To quantify the beam quality of the Pr3+:ZBLAN chip laser, a M2 measurement is conducted by focusing the collimated output to a waist by a 300 mm focal length lens, and the beam profile is recorded by using a silicon CCD camera (PS904, Ophir Photonics). The second-moment beam diameter (1/e2) is determined at different points before, near, and after the focus by fitting a Gaussian function to the recorded beam profiles. The recorded beam profile data is shown in Figs. 4(B) and 4(C) as a function of travel along the beam propagation direction as it goes through the focal point. Negative and positive translations represent the points before and after the focus, respectively. For validation purposes, a similar beam characterization setup is used to quantify the beam quality from a standard HeNe laser (Thorlabs, model # HNLS008R-EC). The only difference being that a 150 mm focal length lens was used in this case. Figures 4(B) and 4(C) show the beam profiles for the Pr3+:ZBLAN and the HeNe laser, respectively. To determine the M2 value, a hyperbolic line-shape (dotted line), as per Eq. (1), was fitted to the experimentally measured data and the M2 values for horizontal (black circle) and vertical (red hexagon) beam profiles that were calculated by using Eqs. (2) and (3):

ϒ(x)=κ×1+(xx0σr)2,
κ0=2×σr×λlaserπ,
M2=(κκ0)2,
where κ is the fitted Gaussian beam waist diameter, σr is the Rayleigh range based on the ϒ(x) fit, λlaser is the lasing wavelength, and κ0 is the theoretically calculated beam waist diameter embedded within the ϒ(x) fit. The calculated M2 values (at 95% confidence interval) for the horizontal and vertical profiles for the Pr3+:ZBLAN and HeNe lasers are shown in Table 1.

 

Fig. 4. (A) Spectra of the laser output from a HeNe laser (red dotted line) and a Pr3+:ZBLAN waveguide chip laser (black solid line). The spectral output of the HeNe laser is at 632.6 nm, and the Pr-ZBLAN laser is at 636 nm. (B) and (C) Beam profile measurements for a Pr-chip laser and HeNe laser. (B) Horizontal (red) and vertical (black) beam profile measurements for the Pr-ZBLAN waveguide chip and (C) horizontal (red) and vertical (black) beam profiles for the HeNe laser. The calculated M2 values for Pr3+:ZBLAN and HeNe output are 1.15×1.1 and 1.09×1.09, respectively, calculated by using Eqs. (1)–(3).

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. M2 Values for Pr3+:ZBLAN Waveguide and HeNe Laser

This waveguide-based monolithic module provides a good alternative for varied industrial and scientific applications, including laser imaging, biomedical, and sensing applications. Recently, mode-locked pulses of 18  ps were reported [14] for Pr3+-doped LiYF4 crystalline material. The available gain bandwidth of up to 1.8 nm in Pr3+ [20] makes it a suitable candidate for solid-state, multi-gigahertz (GHz) repetition rate, passively mode-locked, monolithic devices. Due to the reasonable upper-state lifetime of Pr3+ and short cavity lengths, Q-switched operations with nanosecond (ns) pulse widths can also be realized. We aim to increase the lasing efficiency of this waveguide-based laser module by using improved AR coatings, longer chip lengths, and improved coupling of the PLDs into the chip by designing bespoke optics.

In conclusion, we report the first compact and monolithic Pr3+:ZBLAN waveguide chip laser that emits laser radiation at 636 nm with >8  mW power and a M2 value of 1.15×1.1(±0.1). Improved laser performance may also realize laser operation of the lower gain 527 nm green transition, thus allowing the chip laser to simultaneously emit blue (un-depleted pump), green, and red laser emissions from the same waveguide.

Funding

South Australian Government Innovation Grant (IVP137).

Acknowledgment

Funding was provided by a South Australian Government Innovation Grant in collaboration with SMR Australia. T. M. Monro acknowledges the support of an ARC Georgina Sweet Laureate Fellowship. The authors also appreciate early contributions to this glass composition by Ms. Jun Shi (HUST).

REFERENCES

1. J. J. Wierer, J. Y. Tsao, and D. S. Sizov, Laser Photon. Rev. 7, 963 (2013). [CrossRef]  

2. K. V. Chellappan, E. Erden, and H. Urey, Appl. Opt. 49, F79 (2010). [CrossRef]  

3. J. Zhao, H. Jiang, and J. Di, Opt. Express 16, 2514 (2008). [CrossRef]  

4. A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012). [CrossRef]  

5. W.-Y. Lin, C.-Y. Chen, H.-H. Lu, C.-H. Chang, Y.-P. Lin, H.-C. Lin, and H.-W. Wu, Opt. Express 20, 9919 (2012). [CrossRef]  

6. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, Opt. Express 21, 1203 (2013). [CrossRef]  

7. S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009). [CrossRef]  

8. M. Pascu, N. Moise, and A. Staicu, J. Mol. Struct. 598, 57 (2001). [CrossRef]  

9. V. Gaebler, B. Liu, H. J. Eichler, Z. Zhang, and D. Shen, Opt. Lett. 25, 1343 (2000). [CrossRef]  

10. C. Czeranowsky, E. Heumann, and G. Huber, Opt. Lett. 28, 432 (2003). [CrossRef]  

11. M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991). [CrossRef]  

12. R. D. Dupuis and M. R. Krames, J. Lightwave Technol. 26, 1154 (2008). [CrossRef]  

13. T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. B 58, 149 (1994). [CrossRef]  

14. M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, Opt. Lett. 39, 6939 (2014). [CrossRef]  

15. Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, Opt. Lett. 41, 2692 (2016). [CrossRef]  

16. Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, Opt. Lett. 42, 547 (2017). [CrossRef]  

17. X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 1 (2010). [CrossRef]  

18. F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, Opt. Express 15, 992 (2007). [CrossRef]  

19. B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and R. Moncorgé, Opt. Express 19, 1191 (2011). [CrossRef]  

20. H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, Electron. Lett. 44, 1346 (2008). [CrossRef]  

21. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, Opt. Lett. 16, 1955 (1991). [CrossRef]  

22. V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012). [CrossRef]  

23. M. Olivier, J.-L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. Coulon, A. Braud, J.-L. Adam, and V. Nazabal, Opt. Express 20, 25064 (2012). [CrossRef]  

24. D. G. Lancaster, V. J. Stevens, V. Michaud-Belleau, S. Gross, A. Fuerbach, and T. M. Monro, Opt. Express 23, 32664 (2015). [CrossRef]  

25. D. G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro, Opt. Express 22, 25286 (2014). [CrossRef]  

26. G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, Opt. Express 21, 17413 (2013). [CrossRef]  

27. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, Opt. Lett. 37, 996 (2012). [CrossRef]  

28. M. B. M. Panah and M. Zavvari, Opt. Quantum Electron. 48, 1 (2016). [CrossRef]  

29. S. Gross, D. G. Lancaster, H. Ebendorff-Heidepriem, T. M. Monro, A. Fuerbach, and M. J. Withford, Opt. Mater. Express 3, 574 (2013). [CrossRef]  

30. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, Opt. Express 20, 27503 (2012). [CrossRef]  

31. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, M. J. Withford, D. G. Lancaster, and H. Ebendorff-Heidepriem, Int. J. Appl. Glass Sci. 3, 332 (2012). [CrossRef]  

32. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997). [CrossRef]  

33. H. Okamoto, K. Kasuga, and Y. Kubota, Opt. Lett. 36, 1470 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. J. Wierer, J. Y. Tsao, and D. S. Sizov, Laser Photon. Rev. 7, 963 (2013).
    [Crossref]
  2. K. V. Chellappan, E. Erden, and H. Urey, Appl. Opt. 49, F79 (2010).
    [Crossref]
  3. J. Zhao, H. Jiang, and J. Di, Opt. Express 16, 2514 (2008).
    [Crossref]
  4. A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
    [Crossref]
  5. W.-Y. Lin, C.-Y. Chen, H.-H. Lu, C.-H. Chang, Y.-P. Lin, H.-C. Lin, and H.-W. Wu, Opt. Express 20, 9919 (2012).
    [Crossref]
  6. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, Opt. Express 21, 1203 (2013).
    [Crossref]
  7. S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
    [Crossref]
  8. M. Pascu, N. Moise, and A. Staicu, J. Mol. Struct. 598, 57 (2001).
    [Crossref]
  9. V. Gaebler, B. Liu, H. J. Eichler, Z. Zhang, and D. Shen, Opt. Lett. 25, 1343 (2000).
    [Crossref]
  10. C. Czeranowsky, E. Heumann, and G. Huber, Opt. Lett. 28, 432 (2003).
    [Crossref]
  11. M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991).
    [Crossref]
  12. R. D. Dupuis and M. R. Krames, J. Lightwave Technol. 26, 1154 (2008).
    [Crossref]
  13. T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. B 58, 149 (1994).
    [Crossref]
  14. M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, Opt. Lett. 39, 6939 (2014).
    [Crossref]
  15. Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, Opt. Lett. 41, 2692 (2016).
    [Crossref]
  16. Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, Opt. Lett. 42, 547 (2017).
    [Crossref]
  17. X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 1 (2010).
    [Crossref]
  18. F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, Opt. Express 15, 992 (2007).
    [Crossref]
  19. B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and R. Moncorgé, Opt. Express 19, 1191 (2011).
    [Crossref]
  20. H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, Electron. Lett. 44, 1346 (2008).
    [Crossref]
  21. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, Opt. Lett. 16, 1955 (1991).
    [Crossref]
  22. V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
    [Crossref]
  23. M. Olivier, J.-L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. Coulon, A. Braud, J.-L. Adam, and V. Nazabal, Opt. Express 20, 25064 (2012).
    [Crossref]
  24. D. G. Lancaster, V. J. Stevens, V. Michaud-Belleau, S. Gross, A. Fuerbach, and T. M. Monro, Opt. Express 23, 32664 (2015).
    [Crossref]
  25. D. G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro, Opt. Express 22, 25286 (2014).
    [Crossref]
  26. G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, Opt. Express 21, 17413 (2013).
    [Crossref]
  27. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, Opt. Lett. 37, 996 (2012).
    [Crossref]
  28. M. B. M. Panah and M. Zavvari, Opt. Quantum Electron. 48, 1 (2016).
    [Crossref]
  29. S. Gross, D. G. Lancaster, H. Ebendorff-Heidepriem, T. M. Monro, A. Fuerbach, and M. J. Withford, Opt. Mater. Express 3, 574 (2013).
    [Crossref]
  30. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, Opt. Express 20, 27503 (2012).
    [Crossref]
  31. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, M. J. Withford, D. G. Lancaster, and H. Ebendorff-Heidepriem, Int. J. Appl. Glass Sci. 3, 332 (2012).
    [Crossref]
  32. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
    [Crossref]
  33. H. Okamoto, K. Kasuga, and Y. Kubota, Opt. Lett. 36, 1470 (2011).
    [Crossref]

2017 (1)

2016 (2)

2015 (1)

2014 (2)

2013 (4)

2012 (7)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, M. J. Withford, D. G. Lancaster, and H. Ebendorff-Heidepriem, Int. J. Appl. Glass Sci. 3, 332 (2012).
[Crossref]

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, Opt. Express 20, 27503 (2012).
[Crossref]

W.-Y. Lin, C.-Y. Chen, H.-H. Lu, C.-H. Chang, Y.-P. Lin, H.-C. Lin, and H.-W. Wu, Opt. Express 20, 9919 (2012).
[Crossref]

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, Opt. Lett. 37, 996 (2012).
[Crossref]

M. Olivier, J.-L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. Coulon, A. Braud, J.-L. Adam, and V. Nazabal, Opt. Express 20, 25064 (2012).
[Crossref]

2011 (2)

2010 (2)

X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 1 (2010).
[Crossref]

K. V. Chellappan, E. Erden, and H. Urey, Appl. Opt. 49, F79 (2010).
[Crossref]

2009 (1)

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[Crossref]

2008 (3)

2007 (1)

2003 (1)

2001 (1)

M. Pascu, N. Moise, and A. Staicu, J. Mol. Struct. 598, 57 (2001).
[Crossref]

2000 (1)

1997 (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[Crossref]

1994 (1)

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. B 58, 149 (1994).
[Crossref]

1991 (2)

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991).
[Crossref]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, Opt. Lett. 16, 1955 (1991).
[Crossref]

Abate, A. R.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[Crossref]

Adam, J.-L.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

M. Olivier, J.-L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. Coulon, A. Braud, J.-L. Adam, and V. Nazabal, Opt. Express 20, 25064 (2012).
[Crossref]

Agresti, J. J.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[Crossref]

Ams, M.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, M. J. Withford, D. G. Lancaster, and H. Ebendorff-Heidepriem, Int. J. Appl. Glass Sci. 3, 332 (2012).
[Crossref]

Barany, F.

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

Boutarfaia, A.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

Braud, A.

Cai, Z.

Camy, P.

Chai, B. H. T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. B 58, 149 (1994).
[Crossref]

Chang, C.-H.

Chellappan, K. V.

Chen, C.-Y.

Chen, Y.

Cheng, H.

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991).
[Crossref]

Chi, N.

Cornacchia, F.

Coulon, J.

Czeranowsky, C.

Danger, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. B 58, 149 (1994).
[Crossref]

DePuydt, J. M.

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991).
[Crossref]

Di, J.

Di Lieto, A.

Djouama, T.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

Doualan, J.-L.

Dupuis, R. D.

Ebendorff-Heidepriem, H.

Eichler, H. J.

Erden, E.

Fuerbach, A.

Gaebler, V.

Gaponenko, M.

Gross, S.

Guina, M.

Guy, S.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

Haase, M. A.

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991).
[Crossref]

Hara, I.

H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, Electron. Lett. 44, 1346 (2008).
[Crossref]

Härkönen, A.

Heidepriem, H. E.

Heuer, A.

Heumann, E.

Hirao, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[Crossref]

Huber, G.

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[Crossref]

Jiang, H.

Kasuga, K.

H. Okamoto, K. Kasuga, and Y. Kubota, Opt. Lett. 36, 1470 (2011).
[Crossref]

H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, Electron. Lett. 44, 1346 (2008).
[Crossref]

Kobayashi, T.

Kotani, A.

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

Krames, M. R.

Kränkel, C.

Kubota, Y.

H. Okamoto, K. Kasuga, and Y. Kubota, Opt. Lett. 36, 1470 (2011).
[Crossref]

H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, Electron. Lett. 44, 1346 (2008).
[Crossref]

Lancaster, D. G.

Leinonen, T.

Lhermite, H.

Li, Z.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[Crossref]

Lin, H.-C.

Lin, W.-Y.

Lin, Y.-P.

Liu, B.

Lu, H.-H.

Marshall, G. D.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, M. J. Withford, D. G. Lancaster, and H. Ebendorff-Heidepriem, Int. J. Appl. Glass Sci. 3, 332 (2012).
[Crossref]

Mei, L.

Metz, P. W.

Michaud-Belleau, V.

Miese, C. T.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, M. J. Withford, D. G. Lancaster, and H. Ebendorff-Heidepriem, Int. J. Appl. Glass Sci. 3, 332 (2012).
[Crossref]

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[Crossref]

Miura, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[Crossref]

Moise, N.

M. Pascu, N. Moise, and A. Staicu, J. Mol. Struct. 598, 57 (2001).
[Crossref]

Moncorgé, R.

Monro, T. M.

Mukai, A.

Nazabal, V.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

M. Olivier, J.-L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. Coulon, A. Braud, J.-L. Adam, and V. Nazabal, Opt. Express 20, 25064 (2012).
[Crossref]

Nozawa, Y.

Okamoto, H.

H. Okamoto, K. Kasuga, and Y. Kubota, Opt. Lett. 36, 1470 (2011).
[Crossref]

H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, Electron. Lett. 44, 1346 (2008).
[Crossref]

Olivier, M.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

M. Olivier, J.-L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. Coulon, A. Braud, J.-L. Adam, and V. Nazabal, Opt. Express 20, 25064 (2012).
[Crossref]

Osiri, J. K.

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

Palmer, G.

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, Opt. Express 21, 17413 (2013).
[Crossref]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, M. J. Withford, D. G. Lancaster, and H. Ebendorff-Heidepriem, Int. J. Appl. Glass Sci. 3, 332 (2012).
[Crossref]

Panah, M. B. M.

M. B. M. Panah and M. Zavvari, Opt. Quantum Electron. 48, 1 (2016).
[Crossref]

Parisi, D.

Pascu, M.

M. Pascu, N. Moise, and A. Staicu, J. Mol. Struct. 598, 57 (2001).
[Crossref]

Peyghambarian, N.

X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 1 (2010).
[Crossref]

Pincas, H.

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

Pirasteh, P.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

M. Olivier, J.-L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. Coulon, A. Braud, J.-L. Adam, and V. Nazabal, Opt. Express 20, 25064 (2012).
[Crossref]

Poulain, M.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

Psaltis, D.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[Crossref]

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[Crossref]

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991).
[Crossref]

Richter, A.

Sandrock, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. B 58, 149 (1994).
[Crossref]

Shang, H.

Shen, D.

Sinville, R.

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

Sizov, D. S.

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, Laser Photon. Rev. 7, 963 (2013).
[Crossref]

Soper, S. A.

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

Staicu, A.

M. Pascu, N. Moise, and A. Staicu, J. Mol. Struct. 598, 57 (2001).
[Crossref]

Stevens, V. J.

Südmeyer, T.

Taira, T.

Tang, S. K.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[Crossref]

Tonelli, M.

Tsao, J. Y.

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, Laser Photon. Rev. 7, 963 (2013).
[Crossref]

Urey, H.

Wang, H.

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

Wang, J.

Wang, Y.

Weitz, D. A.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[Crossref]

Whitesides, G. M.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[Crossref]

Wierer, J. J.

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, Laser Photon. Rev. 7, 963 (2013).
[Crossref]

Williams, R. J.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, M. J. Withford, D. G. Lancaster, and H. Ebendorff-Heidepriem, Int. J. Appl. Glass Sci. 3, 332 (2012).
[Crossref]

Witek, M. A.

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

Withford, M. J.

Wu, H.-W.

Xu, B.

Yu, H.

Yu, J.

Zavvari, M.

M. B. M. Panah and M. Zavvari, Opt. Quantum Electron. 48, 1 (2016).
[Crossref]

Zhang, H.

Zhang, R.

Zhang, Y.

Zhang, Z.

Zhao, G.

Zhao, J.

Zhu, X.

X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 1 (2010).
[Crossref]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 1 (2010).
[Crossref]

Anal. Methods (1)

A. Kotani, M. A. Witek, J. K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, and S. A. Soper, Anal. Methods 4, 58 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. B 58, 149 (1994).
[Crossref]

Appl. Phys. Lett. (2)

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
[Crossref]

Electron. Lett. (1)

H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, Electron. Lett. 44, 1346 (2008).
[Crossref]

Int. J. Appl. Glass Sci. (1)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, M. J. Withford, D. G. Lancaster, and H. Ebendorff-Heidepriem, Int. J. Appl. Glass Sci. 3, 332 (2012).
[Crossref]

J. Fluorine Chem. (1)

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.-L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J.-L. Adam, J. Fluorine Chem. 134, 18 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Mol. Struct. (1)

M. Pascu, N. Moise, and A. Staicu, J. Mol. Struct. 598, 57 (2001).
[Crossref]

Lab Chip (1)

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[Crossref]

Laser Photon. Rev. (1)

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, Laser Photon. Rev. 7, 963 (2013).
[Crossref]

Opt. Express (10)

Opt. Lett. (8)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

M. B. M. Panah and M. Zavvari, Opt. Quantum Electron. 48, 1 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (A) Schematic representation of the visible domain energy level diagram for Pr 3 + : ZBLAN glass and (B) the absorption spectrum (black dotted line) of the Pr 3 + : ZBLAN glass and the spectrum of the pump laser diode (PLD) at 442 nm (blue solid line). After initial excitation at 442 nm, the excited state ( P 2 3 ) can radiatively relax to the ground state ( H 4 3 ) via 479, 523, 635, and 716 nm transitions.
Fig. 2.
Fig. 2. Schematic representation of the experimental setup for visible laser emission. (A) Image of the collimated emission of the monolithic laser. (B) Bright-field microscope image of the laser-etched waveguide and (C) photo of the monolithic waveguide chip laser module. LD(1-2), pump laser diodes at 442 nm; L(1-2), aspheric lens; L(3-4), plano-convex lens; APP(1-2), anamorphic prism pair; M1, reflective mirror for the pump beam; PBSC, polarization beam splitter cube; IC, input coupler; Pr-ZBLAN Chip, Pr 3 + : ZBLAN waveguide chip; OC, output coupler; LPF, long pass filter; PM, power meter.
Fig. 3.
Fig. 3. Slope efficiency measurements at 5% and 3% OC. The experimental data at 5% and 3% OC is represented by circles (black) and squares (red). The slope efficiencies are calculated by using a line of best fit through the experimental data. The solid line (black) is the 5% OC giving a slope efficiency of 10%, and the dotted line (red) is for 3% OC with a slope efficiency of 7%. The estimated lasing threshold for 5% and 3% OC is 55 and 52 mW, respectively.
Fig. 4.
Fig. 4. (A) Spectra of the laser output from a HeNe laser (red dotted line) and a Pr 3 + : ZBLAN waveguide chip laser (black solid line). The spectral output of the HeNe laser is at 632.6 nm, and the Pr-ZBLAN laser is at 636 nm. (B) and (C) Beam profile measurements for a Pr-chip laser and HeNe laser. (B) Horizontal (red) and vertical (black) beam profile measurements for the Pr-ZBLAN waveguide chip and (C) horizontal (red) and vertical (black) beam profiles for the HeNe laser. The calculated M 2 values for Pr 3 + : ZBLAN and HeNe output are 1.15 × 1.1 and 1.09 × 1.09 , respectively, calculated by using Eqs. (1)–(3).

Tables (1)

Tables Icon

Table 1. M 2 Values for Pr 3 + : ZBLAN Waveguide and HeNe Laser

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϒ ( x ) = κ × 1 + ( x x 0 σ r ) 2 ,
κ 0 = 2 × σ r × λ laser π ,
M 2 = ( κ κ 0 ) 2 ,

Metrics