Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser-induced fluorescence thermometry of supercritical CO2 flows inside a micro-channel

Abstract

This work demonstrates a thermometric technique using laser-induced fluorescence (LIF) in supercritical carbon dioxide flows in a micro-channel. Rhodamine 6G was used as a temperature-sensitive fluorescent dye. The flow conditions were at a pressure of 7.9 MPa and temperature in the range of 23°–90°C. 2D spatial distributions and time-resolved temperature profiles were obtained at this high pressure. Measured LIF signals showed close relations to the temperatures obtained from resistance temperature detectors.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Characterization of tracers for two-color laser-induced fluorescence thermometry of liquid-phase temperature in ethanol, 2–ethylhexanoic-acid/ethanol mixtures, 1-butanol, and o-xylene

Markus Michael Prenting, Maksim Shilikhin, Thomas Dreier, Christof Schulz, and Torsten Endres
Appl. Opt. 60(15) C98-C113 (2021)

Quantitative 2-D OH thermometry using spectrally resolved planar laser-induced fluorescence

Shengkai Wang and Ronald K. Hanson
Opt. Lett. 44(3) 578-581 (2019)

10 kHz 2D thermometry in turbulent reacting flows using two-color OH planar laser-induced fluorescence

Paul S. Hsu, Naibo Jiang, Daniel Lauriola, Stephen W. Grib, Stephen A. Schumaker, Andrew W. Caswell, and Sukesh Roy
Appl. Opt. 60(15) C1-C7 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.