Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temporally stable fiber amplifier pumped random distributed feedback Raman fiber laser with record output power

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, we propose a scheme to use a temporally stable pump source in a high-power random distributed feedback Raman fiber laser (RRFL) with a half-open cavity. Different from conventional pump manners, the pump source is based on an Yb-doped fiber amplifier, seeded by a temporally stable phase-modulated single-frequency fiber laser for suppressing the spectral broadening and second-order Raman Stokes generation in the output laser. Using a piece of 50-m-long 20/400 µm passive fiber, the maximum output power of 1570 W was obtained with a pump power of 2025 W. The conversion efficiency with respect to the pump power was 77.5%. To the best of our knowledge, this is the highest output power ever reported in a RRFL to date. This work could provide a novel method for power scaling of RRFLs.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Brightness enhancement in random Raman fiber laser based on a graded-index fiber with high-power multimode pumping

Yizhu Chen, Chenchen Fan, Tianfu Yao, Hu Xiao, Jinyong Leng, Pu Zhou, Ilya N. Nemov, Alexey G. Kuznetsov, and Sergey A. Babin
Opt. Lett. 46(5) 1185-1188 (2021)

More than 200  W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber

Jinyan Dong, Lei Zhang, Jiaqi Zhou, Weiwei Pan, Xijia Gu, and Yan Feng
Opt. Lett. 44(7) 1801-1804 (2019)

Low quantum defect random Raman fiber laser

Yang Zhang, Sicheng Li, Jun Ye, Xiaoya Ma, Jiangming Xu, Tianfu Yao, and Pu Zhou
Opt. Lett. 47(5) 1109-1112 (2022)

Data Availability

Data underlying the results presented in this Letter are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.