Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Development of a handheld compression optical coherence elastography probe with a disposable stress sensor

Not Accessible

Your library or personal account may give you access

Abstract

Optical coherence elastography (OCE) is a functional extension of optical coherence tomography (OCT). OCE measures a sample’s deformation under force stimuli. Compression is often used to generate the force stimuli in OCE. In this Letter, we report the development of a handheld quantitative compression OCE probe with a novel stress senor, dedicated to measuring the force. The stress sensor consists of a circular glass window and a metal ring which are connected with polyurethane spokes. This sensor is mounted on the tip of the OCT sample arm as an imaging window, so that the force applied to the sample through the window can be measured by detecting the window displacement from the OCT image. The force-displacement function was first developed through simulation on COMSOL Multiphysics and eventually calibrated experimentally. A phase-sensitive OCT technique was employed to measure both the window displacement and the sample deformation. The performance of an OCE probe with this stress sensor was evaluated on a two-layer phantom. The results show that it is extremely capable of measuring the sample Young’s modulus. Finally, we successfully measured the elasticity of the human fingertip, indicating a good potential of this OCE probe for in vivo elastogram measurement on human skin.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative compressive optical coherence elastography using structural OCT imaging and optical palpation to measure soft contact lens mechanical properties

Zachery Quince, David Alonso-Caneiro, Scott A. Read, and Michael J. Collins
Biomed. Opt. Express 12(12) 7315-7326 (2021)

All-optical noncontact phase-domain photoacoustic elastography

Fen Yang, Zhongjiang Chen, and Da Xing
Opt. Lett. 46(19) 5063-5066 (2021)

Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties

Yi Qiu, Yahui Wang, Yiqing Xu, Namas Chandra, James Haorah, Basil Hubbi, Bryan J. Pfister, and Xuan Liu
Biomed. Opt. Express 7(2) 688-700 (2016)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.