Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection

Not Accessible

Your library or personal account may give you access

Abstract

We present a novel, to the best of our knowledge, InGaAs/InAlAs single-photon avalanche diode (SPAD) with a triple-mesa structure. Compared with the traditional mesa structures, the horizontal distribution of the electric field decreases dramatically, while the peaks of the electric field at the mesa edges are well eliminated in the triple-mesa structure, leading to an excellent suppression of the surface leakage current and premature breakdown. Furthermore, the temperature coefficient of the breakdown voltage was measured to be as small as 37.4 mV/K within a range from 150 to 270 K. Eventually, one of the highest single-photon detection efficiencies of 35% among all the InGaAs/InAlAs SPADs with a decent dark count rate of ${3.3} \times {{10}^7}\;{\rm Hz}$ was achieved at 240 K. Combined with the inherent ease of integration of the mesa structure, this high-performance triple-mesa InGaAs/InAlAs SPAD provides an effective solution for the fabrication of SPAD arrays and the on-chip integration of quantum systems.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature

Xiao Meng, Chee Hing Tan, Simon Dimler, John P R David, and Jo Shien Ng
Opt. Express 22(19) 22608-22615 (2014)

Exploiting the single-photon detection performance of InGaAs negative-feedback avalanche diode with fast active quenching

Junliang Liu, Yining Xu, Yongfu Li, Zhaojun Liu, and Xian Zhao
Opt. Express 29(7) 10150-10161 (2021)

Data Availability

No data were generated or analyzed in the research presented in this Letter.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.