Abstract

In order to utilize the full potential of tailored flows of electromagnetic energy at the nanoscale, we need to understand its general behavior given by its generic representation of interfering random waves. For applications in on-chip photonics as well as particle trapping, it is important to discern between the topological features in the flow-field of the commonly investigated cases of fully vectorial light fields and their 2D equivalents. We demonstrate the distinct difference between these cases in both the allowed topology of the flow-field and the spatial distribution of its singularities, given by their pair correlation function $ g(r) $. Specifically, we show that a random field confined to a 2D plane has a divergence-free flow-field and exhibits a liquid-like correlation, whereas its freely propagating counterpart has no clear correlation and features a transverse flow-field with the full range of possible 2D topologies around its singularities.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scattering detection of a solenoidal Poynting vector field

Shima Fardad, Alessandro Salandrino, Akbar Samadi, Matthias Heinrich, Zhigang Chen, and Demetrios N. Christodoulides
Opt. Lett. 41(15) 3615-3618 (2016)

Topological structures in the Poynting vector field: an experimental realization

Vijay Kumar and Nirmal K. Viswanathan
Opt. Lett. 38(19) 3886-3889 (2013)

Screening and fluctuation of the topological charge in random wave fields

L. De Angelis and L. Kuipers
Opt. Lett. 43(12) 2740-2743 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription