Abstract

In this Letter, we propose and demonstrate efficient adaptive optics correction of a distributed 19-element fiber laser array for both receiving and transmission for the first time, to our best knowledge. Active beam coupling from space into polarization-maintaining fibers and all-fiber active cophasing beam combining with multiple-level fiber couplers are performed. Phase distortions distributed throughout the optical path from the simulated target to the receiving port are eliminated, and nearly ideal coherent combining is achieved in the far-field. Comprehensive reception efficiency is raised up to 52 times with the whole equivalent aperture of 152 mm and the far-field power-in-the-bucket metric up to 8.27 times. The optimal array element parameters for a given whole array aperture and turbulence intensity are analyzed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-aperture all-fiber active coherent beam combining for free-space optical communication receivers

Yan Yang, Chao Geng, Feng Li, Guan Huang, and Xinyang Li
Opt. Express 25(22) 27519-27532 (2017)

Simultaneous turbulence mitigation and channel demultiplexing for two 100  Gbit/s orbital-angular-momentum multiplexed beams by adaptive wavefront shaping and diffusing

Runzhou Zhang, Hao Song, Zhe Zhao, Haoqian Song, Jing Du, Cong Liu, Kai Pang, Long Li, Huibin Zhou, Ari N. Willner, Ahmed Almaiman, Yiyu Zhou, Robert W. Boyd, Brittany Lynn, Robert Bock, Moshe Tur, and Alan E. Willner
Opt. Lett. 45(3) 702-705 (2020)

Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence

Mikhail Vorontsov, Grigory Filimonov, Vladimir Ovchinnikov, Ernst Polnau, Svetlana Lachinova, Thomas Weyrauch, and Joseph Mangano
Appl. Opt. 55(15) 4170-4185 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. W. S. Chan, J. Lightwave Technol. 24, 4750 (2006).
    [Crossref]
  2. M. A. Krainak and D. M. Cornwell, OSA Advanced Photonics Congress NeM2D (2019), paper NeM2D.1.
    [Crossref]
  3. Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, Opt. Express 25, 27519 (2017).
    [Crossref]
  4. S. M. Zhao, J. Leach, L. Y. Gong, J. Ding, and B. Y. Zheng, Opt. Express 20, 452 (2012).
    [Crossref]
  5. F. Feng, I. H. White, and T. D. Wilkinson, J. Lightwave Technol. 32, 1239 (2014).
    [Crossref]
  6. L. Büttner, C. Leithold, and J. Czarske, Opt. Express 21, 30653 (2013).
    [Crossref]
  7. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, Opt. Lett. 36, 2686 (2011).
    [Crossref]
  8. Y. Ma, X. Wang, J. Leng, H. Xiao, X. Dong, J. Zhu, W. Du, P. Zhou, X. Xu, L. Si, Z. Liu, and Y. Zhao, Opt. Lett. 36, 951 (2011).
    [Crossref]
  9. C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, Opt. Express 21, 25045 (2013).
    [Crossref]
  10. M. Vorontsov, G. Filimonov, V. Ovchinnikov, E. Polnau, S. Lachinova, T. Weyrauch, and J. Mangano, Appl. Opt. 55, 4170 (2016).
    [Crossref]
  11. F. Li, C. Geng, G. Huang, Y. Yang, and X. Li, Opt. Express 27, 8943 (2019).
    [Crossref]
  12. V. E. Leshchenko, Opt. Express. 23, 15944 (2015).
    [Crossref]
  13. S. L. Lachinova and M. A. Vorontsov, J. Opt. Soc. Am. A 25, 1960 (2008).
    [Crossref]
  14. M. A. Vorontsov and S. L. Lachinova, J. Opt. Soc. Am. A 25, 1949 (2008).
    [Crossref]
  15. T. Weyrauch, M. Vorontsov, J. Mangano, V. Ovchinnikov, D. Bricker, E. Polnau, and A. Rostov, Opt. Lett. 41, 840 (2016).
    [Crossref]
  16. M. A. Vorontsov and V. P. Sivokon, J. Opt. Soc. Am. A 15, 2745 (1998).
    [Crossref]
  17. D. J. Geisler, T. M. Yarnall, M. L. Stevens, C. M. Schieler, B. S. Robinson, and S. A. Hamilton, Opt. Express 24, 12661 (2016).
    [Crossref]
  18. K. Li, J. Ma, L. Tan, S. Yu, and C. Zhai, Appl. Opt. 55, 4649 (2016).
    [Crossref]
  19. H. Takenaka, M. Toyoshima, and Y. Takayama, Opt. Express 20, 15301 (2012).
    [Crossref]
  20. D. Zhi, Y. Ma, R. Tao, P. Zhou, X. Wang, Z. Chen, and L. Si, Sci. Rep. 9, 2783 (2019).
    [Crossref]
  21. N. C. Becker, S. Hädrich, T. Eidam, F. Just, K. Osvay, Z. Várallyay, J. Limpert, A. Tünnermann, T. Pertsch, and F. Eilenberger, Opt. Lett. 42, 3916 (2017).
    [Crossref]
  22. A. Klenke, M. Müller, H. Stark, A. Tünnermann, and J. Limpert, Opt. Express 26, 12072 (2018).
    [Crossref]
  23. G. Huang, C. Geng, F. Li, Y. Yang, and X. Li, IEEE Photon. J. 10, 7904212 (2018).
    [Crossref]

2019 (2)

F. Li, C. Geng, G. Huang, Y. Yang, and X. Li, Opt. Express 27, 8943 (2019).
[Crossref]

D. Zhi, Y. Ma, R. Tao, P. Zhou, X. Wang, Z. Chen, and L. Si, Sci. Rep. 9, 2783 (2019).
[Crossref]

2018 (2)

A. Klenke, M. Müller, H. Stark, A. Tünnermann, and J. Limpert, Opt. Express 26, 12072 (2018).
[Crossref]

G. Huang, C. Geng, F. Li, Y. Yang, and X. Li, IEEE Photon. J. 10, 7904212 (2018).
[Crossref]

2017 (2)

2016 (4)

2015 (1)

V. E. Leshchenko, Opt. Express. 23, 15944 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (2)

2011 (2)

2008 (2)

2006 (1)

1998 (1)

Augst, S. J.

Becker, N. C.

Bricker, D.

Büttner, L.

Chan, V. W. S.

Chen, Z.

D. Zhi, Y. Ma, R. Tao, P. Zhou, X. Wang, Z. Chen, and L. Si, Sci. Rep. 9, 2783 (2019).
[Crossref]

Cornwell, D. M.

M. A. Krainak and D. M. Cornwell, OSA Advanced Photonics Congress NeM2D (2019), paper NeM2D.1.
[Crossref]

Czarske, J.

Ding, J.

Dong, X.

Du, W.

Eidam, T.

Eilenberger, F.

Fan, T. Y.

Feng, F.

Filimonov, G.

Geisler, D. J.

Geng, C.

Goldizen, K. C.

Gong, L. Y.

Hädrich, S.

Hamilton, S. A.

Huang, G.

Just, F.

Klenke, A.

Krainak, M. A.

M. A. Krainak and D. M. Cornwell, OSA Advanced Photonics Congress NeM2D (2019), paper NeM2D.1.
[Crossref]

Lachinova, S.

Lachinova, S. L.

Leach, J.

Leithold, C.

Leng, J.

Leshchenko, V. E.

V. E. Leshchenko, Opt. Express. 23, 15944 (2015).
[Crossref]

Li, F.

Li, K.

Li, X.

Limpert, J.

Liu, H.

Liu, Z.

Luo, W.

Ma, J.

Ma, Y.

Mangano, J.

Mu, J.

Müller, M.

Murphy, D. V.

Osvay, K.

Ovchinnikov, V.

Pertsch, T.

Polnau, E.

Redmond, S. M.

Robinson, B. S.

Rostov, A.

Sanchez, A.

Schieler, C. M.

Si, L.

Sivokon, V. P.

Stark, H.

Stevens, M. L.

Takayama, Y.

Takenaka, H.

Tan, L.

Tan, Y.

Tao, R.

D. Zhi, Y. Ma, R. Tao, P. Zhou, X. Wang, Z. Chen, and L. Si, Sci. Rep. 9, 2783 (2019).
[Crossref]

Toyoshima, M.

Tünnermann, A.

Várallyay, Z.

Vorontsov, M.

Vorontsov, M. A.

Wang, X.

Weyrauch, T.

White, I. H.

Wilkinson, T. D.

Xiao, H.

Xu, X.

Yang, Y.

Yarnall, T. M.

Yu, C. X.

Yu, S.

Zhai, C.

Zhao, S. M.

Zhao, Y.

Zheng, B. Y.

Zhi, D.

D. Zhi, Y. Ma, R. Tao, P. Zhou, X. Wang, Z. Chen, and L. Si, Sci. Rep. 9, 2783 (2019).
[Crossref]

Zhou, P.

Zhu, J.

Appl. Opt. (2)

IEEE Photon. J. (1)

G. Huang, C. Geng, F. Li, Y. Yang, and X. Li, IEEE Photon. J. 10, 7904212 (2018).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (3)

Opt. Express (8)

Opt. Express. (1)

V. E. Leshchenko, Opt. Express. 23, 15944 (2015).
[Crossref]

Opt. Lett. (4)

Sci. Rep. (1)

D. Zhi, Y. Ma, R. Tao, P. Zhou, X. Wang, Z. Chen, and L. Si, Sci. Rep. 9, 2783 (2019).
[Crossref]

Other (1)

M. A. Krainak and D. M. Cornwell, OSA Advanced Photonics Congress NeM2D (2019), paper NeM2D.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental scheme of the adaptive optics correction of distributed 19-element fiber laser array. HVA, high voltage amplifier.
Fig. 2.
Fig. 2. Scheme of the cophasing module.
Fig. 3.
Fig. 3. Curves of normalized light intensity coupled by the AFOC array.
Fig. 4.
Fig. 4. Normalized light intensity curves of the coupled and combined laser beams at the laser receiving port.
Fig. 5.
Fig. 5. Long exposure patterns in far field (frame averaged) during the experiment: (a) open loop; (b) adaptive fiber coupling only; (c) cophasing only; (d) both cophasing and adaptive fiber coupling.
Fig. 6.
Fig. 6. PIB metric proportion as the function of time.
Fig. 7.
Fig. 7. Fiber coupling efficiency and cophasing efficiency vary as the array element number under a certain turbulence intensity of $D/{r_0} = {10}$ .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E o = 1 19 { n = 1 19 γ κ 2 I n exp [ j ( φ n + ψ n ) ] } ,

Metrics