Abstract

We propose and numerically demonstrate a scheme of coherent optical chaos communication using semiconductor lasers for secure transmission of optical quadrature amplitude modulation (QAM) signals. In this scheme, a laser intensity chaos and its delayed duplicate are used to amplitude-quadrature modulate a continuous-wave light to generate a chaotic carrier. High-quality chaotic carrier synchronization between the transmitter and receiver is guaranteed by laser intensity chaos synchronization, avoiding laser phase fluctuation. Decryption is implemented by a 90 deg optical hybrid using the synchronous chaotic carrier as local light. Secure transmission of an optical 40 Gb/s 16QAM signal is demonstrated by using a laser intensity chaos with a bandwidth of 11.7 GHz. The system performances are evaluated by analyzing a bit error ratio with different masking coefficients, signal rates, synchronization coefficients, parameter mismatches, and dispersion compensation. It is believed that this scheme can pave a way for high-speed optical chaos communication.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
32  Gb/s chaotic optical communications by deep-learning-based chaos synchronization

Junxiang Ke, Lilin Yi, Zhao Yang, Yunpeng Yang, Qunbi Zhuge, Yaping Chen, and Weisheng Hu
Opt. Lett. 44(23) 5776-5779 (2019)

Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos

Jianzhou Ai, Lulu Wang, and Jian Wang
Opt. Lett. 42(18) 3662-3665 (2017)

Effect of ADC parameters on neural network based chaotic optical communication

Zhao Yang, Junxiang Ke, Weisheng Hu, and Lilin Yi
Opt. Lett. 46(1) 90-93 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription