Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of longitudinal chromatism on vacuum acceleration by intense radially polarized laser beams

Not Accessible

Your library or personal account may give you access

Abstract

We report with single-particle simulations that longitudinal chromatism, a commonly occurring spatio-temporal coupling in ultrashort laser pulses, can have a significant influence in the longitudinal acceleration of electrons via high-power, tightly-focused, and radially polarized laser beams. This effect can be advantageous, and even more so when combined with small values of temporal chirp. However, the effect can also be highly destructive when the magnitude and sign of the longitudinal chromatism is not ideal, even at very small magnitudes. This motivates the characterization and understanding of the driving laser pulses and further study of the influence of similar low-order spatial-temporal couplings on such acceleration.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam

Liang Jie Wong and Franz X. Kärtner
Opt. Express 18(24) 25035-25051 (2010)

Laser nanoprocessing via an enhanced longitudinal electric field of a radially polarized beam

Yukine Tsuru, Yuichi Kozawa, Yuuki Uesugi, and Shunichi Sato
Opt. Lett. 49(6) 1405-1408 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.