Abstract

We have created the first high-power Faraday isolator on an anisotropic magneto-optical element (MOE). The isolator is based on one MOE of a uniaxial CeF3 crystal and ensures an isolation degree of 30 dB at a high average laser radiation power of 700 W. The limitations due to the anisotropic nature of the crystal do not impose significantly more stringent requirements, either for the beam or the MOE.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Faraday isolator based on TSAG crystal for high power lasers

E. A. Mironov and O. V. Palashov
Opt. Express 22(19) 23226-23230 (2014)

High-power Faraday isolators based on TAG ceramics

Dmitry Zheleznov, Aleksey Starobor, Oleg Palashov, Chong Chen, and Shengming Zhou
Opt. Express 22(3) 2578-2583 (2014)

Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power

Efim Khazanov, Nicolay Andreev, Oleg Palashov, Anatoly Poteomkin, Alexander Sergeev, Oliver Mehl, and David H. Reitze
Appl. Opt. 41(3) 483-492 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription