Abstract

In this Letter, we present, to the best of our knowledge, the largest effective single-mode fiber reported to date. The employed waveguide is a passive large pitch fiber (LPF), which shows the core area scaling potential of such a fiber structure. In particular, we achieved stable single-transverse mode transmission at a wavelength of 1.03 μm through a straight passive LPF with a pitch of 140 μm, resulting in a measured mode-field diameter of 205 μm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
140  μm single-polarization passive fully aperiodic large-pitch fibers operating near 2 μm

Dia Darwich, Mostafa Sabra, Remi du Jeu, Marie-Alicia Malleville, Romain Dauliat, Raphaël Jamier, Aurélien Benoit, Kay Schuster, and Philippe Roy
Appl. Opt. 56(33) 9221-9224 (2017)

Broadband single-mode single-polarization passive fully aperiodic large-pitch fibers

Rémi du Jeu, Romain Dauliat, Dia Darwich, Aurélien Benoit, Raphaël Jamier, Kay Schuster, and Philippe Roy
Opt. Lett. 42(9) 1672-1675 (2017)

High average power large-pitch fiber amplifier with robust single-mode operation

Fabian Stutzki, Florian Jansen, Tino Eidam, Alexander Steinmetz, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann
Opt. Lett. 36(5) 689-691 (2011)

References

  • View by:
  • |
  • |
  • |

  1. X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, Opt. Express 22, 9206 (2014).
    [Crossref]
  2. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, Opt. Express 20, 5742 (2012).
    [Crossref]
  3. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, Opt. Express 17, 8962 (2009).
    [Crossref]
  4. D. Jain, C. Baskiotis, and J. K. Sahu, Opt. Express 21, 1448 (2013).
    [Crossref]
  5. G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, Opt. Express 23, 9147 (2015).
    [Crossref]
  6. J.-P. Yehouessi, O. Vanvincq, A. Cassez, M. Douay, Y. Quiquempois, G. Bouwmans, and L. Bigot, Opt. Express 24, 4761 (2016).
    [Crossref]
  7. F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, Optica 1, 233 (2014).
    [Crossref]
  8. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 19, 255 (2011).
    [Crossref]
  9. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 36, 689 (2011).
    [Crossref]
  10. H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 39, 6446 (2014).
    [Crossref]
  11. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 1073 (2012).
    [Crossref]
  12. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
    [Crossref]
  13. Z. Zhu and T. Brown, Opt. Express 10, 853 (2002).
    [Crossref]
  14. F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).
  15. L. Fu, H. A. McKay, and L. Dong, Opt. Express 17, 11782 (2009).
    [Crossref]
  16. C. Gaida, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 40, 5160 (2015).
    [Crossref]

2016 (1)

2015 (2)

2014 (3)

2013 (1)

2012 (3)

2011 (2)

2009 (2)

2002 (1)

Alkeskjold, T. T.

Baskiotis, C.

Bigot, L.

Bouwmans, G.

Broeng, J.

Brown, T.

Carstens, H.

Cassez, A.

Dong, L.

Douay, M.

Eidam, T.

Fermann, M. E.

Fu, L.

Gaida, C.

Galvanauskas, A.

Gebhardt, M.

Gu, G.

Hädrich, S.

Hansen, K. R.

Hawkins, T. W.

Hu, I.-N.

Jain, D.

Jansen, F.

Jauregui, C.

Jones, M.

Jørgensen, M. M.

Kaplan, A.

Kong, F.

Lægsgaard, J.

Laurila, M.

Liem, A.

Limpert, J.

Ma, X.

Marcinkevicius, A.

McKay, H. A.

Modsching, N.

Ohta, M.

Otto, H.-J.

Quiquempois, Y.

Rothhardt, J.

Sahu, J. K.

Steinmetz, A.

Stutzki, F.

Suzuki, S.

Träger, F.

F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).

Tünnermann, A.

Vanvincq, O.

Yehouessi, J.-P.

Zhu, C.

Zhu, Z.

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
[Crossref]

Opt. Express (9)

Opt. Lett. (4)

Optica (1)

Other (1)

F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).

Supplementary Material (1)

NameDescription
» Visualization 1       By offsetting the coupling lens in the x- and y-direction almost no content of higher order transverse modes was observed at the fiber end facet.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Cross section of (a) active and (b) passive LPFs. The structure consists of a hexagonal arrangement of equidistant air holes (separated by a pitch Λ ) with diameter d . An additional cladding and a doped core region are added for the active LPF.
Fig. 2.
Fig. 2. (a) and (b) Microscope images of a passive LPF with d / Λ 0.3 and simulation of the (c)  LP 01 -like and (d)  LP 11 -like modes in this structure.
Fig. 3.
Fig. 3. Confinement losses of the FM (upper graph) and first HOM (lower graph) in logarithmic scale versus the pitch for different values for d / Λ .
Fig. 4.
Fig. 4. Setup for fiber characterization: a collimated beam with 1.03 μm wavelength is expanded by a telescope and focused into the fiber. The end facet is imaged onto a CCD camera.
Fig. 5.
Fig. 5. (a) Emitted beam after propagation in a 1.3 m long passive LPF with a 140 μm pitch and (b) calculated FM of the corresponding fiber structure. Visualization 1 shows the emitted beam at the fiber end facet while offsetting the coupling lens.

Tables (1)

Tables Icon

Table 1. Simulation (Sim.) and Measurement (Meas.) Results of the FM Propagation Losses and the MFD for Different LPFs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = 10 · log 10 ( e ) · ( 4 π λ · Im ( n eff ) ) .

Metrics