Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Magnetoplasmons in monolayer black phosphorus structures

Not Accessible

Your library or personal account may give you access

Abstract

Two-dimensional materials supporting deep-subwavelength plasmonic modes can also exhibit strong magneto-optical responses. Here, we theoretically investigate magnetoplasmons (MPs) in monolayer black phosphorus (BP) structures under moderate static magnetic fields. We consider three different structures, namely, a continuous BP monolayer, an edge formed by a semi-infinite sheet, and finally, a triangular wedge configuration. Each of these structures shows strongly anisotropic magneto-optical responses induced both by the external magnetic field and by the intrinsic anisotropy of the BP lattice. Starting from the magneto-optical conductivity of a single layer of BP, we derive the dispersion relation of the MPs in the considered geometries, using a combination of analytical, semi-analytical, and numerical methods. We fully characterize the MP dispersions and the properties of the corresponding field distributions, and we show that these structures sustain strongly anisotropic subwavelength modes that are highly tunable. Our results demonstrate that MPs in monolayer BP, with its inherent lattice anisotropy as well as magnetically induced anisotropy, hold potential for tunable anisotropic materials operating below the diffraction limit, thereby paving the way for tailored nanophotonic devices at the nanoscale.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical activity in monolayer black phosphorus due to extrinsic chirality

Qilin Hong, Wei Xu, Jianfa Zhang, Zhihong Zhu, Xiaodong Yuan, and Shiqiao Qin
Opt. Lett. 44(7) 1774-1777 (2019)

Designing a nearly perfect infrared absorber in monolayer black phosphorus

Daxing Dong, Youwen Liu, Yue Fei, Yongqing Fan, Junsheng Li, Yuncai Feng, and Yangyang Fu
Appl. Opt. 58(14) 3862-3869 (2019)

Surface plasmons in a nanostructured black phosphorus flake

Xinyue Ni, Lin Wang, Jinxuan Zhu, Xiaoshuang Chen, and Wei Lu
Opt. Lett. 42(13) 2659-2662 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.