Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient arsenic trisulfide vertical grating coupler on lithium niobate for integrated photonic applications

Abstract

An efficient vertical grating coupler design for arsenic trisulfide (As2S3) on silicon dioxide (SiO2) on lithium niobate (LN) is proposed, fabricated, and experimentally verified. We report 4 dB coupling efficiency per grating for vertical fiber coupling at a wavelength of 1550 nm with a 3 dB bandwidth of 40 nm using an aluminum reflector mirror between the LN and SiO2 interface. This coupler is the first step towards the demonstration of high-performance integrated photonic devices, which would simultaneously benefit from the acousto-optic properties of As2S3 and electro-optic and acoustic properties of LN. This hybrid platform is deemed to impact a broad range of applications such as imaging, ranging, and inertial sensing.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
High coupling efficiency waveguide grating couplers on lithium niobate

Xuetong Zhou, Ying Xue, Fan Ye, Ziyao Feng, Yuan Li, Xiankai Sun, Kei May Lau, and Hon Ki Tsang
Opt. Lett. 48(12) 3267-3270 (2023)

High-efficiency apodized bidirectional grating coupler for perfectly vertical coupling

Zanyun Zhang, Xia Chen, Qian Cheng, Ali Z. Khokhar, Xingzhao Yan, Beiju Huang, Hongda Chen, Hongwei Liu, Hongqiang Li, David J. Thomson, and Graham T. Reed
Opt. Lett. 44(20) 5081-5084 (2019)

Efficient grating couplers on a thin film lithium niobate–silicon rich nitride hybrid platform

Yang Liu, Xingrui Huang, Zezheng Li, Huan Guan, Qingquan Wei, Zhongchao Fan, Weihua Han, and Zhiyong Li
Opt. Lett. 45(24) 6847-6850 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.