Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Regularization of vertical-cavity surface-emitting laser emission by periodic non-Hermitian potentials

Not Accessible

Your library or personal account may give you access

Abstract

We propose a novel physical mechanism based on periodic non-Hermitian potentials to efficiently control the complex spatial dynamics of broad-area lasers, particularly in vertical-cavity surface-emitting lasers (VCSELs), achieving a stable emission of maximum brightness. A radially dephased periodic refractive index and gain-loss modulations accumulate the generated light from the entire active layer and concentrate it around the structure axis to emit narrow, bright beams. The effect is due to asymmetric inward radial coupling between transverse wave vectors for particular phase differences of the refractive index and gain-loss modulations. Light is confined into a central beam with large intensity, opening the path to design compact, bright, and efficient broad-area light sources. We perform a comprehensive analysis to explore the maximum central intensity enhancement and concentration regimes. This Letter reveals that the optimum schemes are those holding unidirectional inward coupling, but not fulfilling a perfect local PT-symmetry.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Non-Hermitian spectral changes in the scattering of partially coherent radiation by periodic structures

P. A. Brandão and S. B. Cavalcanti
Opt. Lett. 44(17) 4363-4366 (2019)

GaSb-based vertical-cavity surface-emitting lasers with an emission wavelength at 3 μm

Alexander Andrejew, Stephan Sprengel, and Markus-Christian Amann
Opt. Lett. 41(12) 2799-2802 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.