Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Frequency-modulated continuous-wave microwave generation using stabilized period-one nonlinear dynamics of semiconductor lasers

Not Accessible

Your library or personal account may give you access

Abstract

Frequency-modulated continuous-wave (FMCW) microwave generation is studied using a semiconductor laser operating at stabilized period-one (P1) nonlinear dynamics when subject to comb-like (CL) optical injection. The phase locking established between the P1 dynamics and the CL optical injection not only improves the P1 oscillation stability considerably but also provides a mechanism to change the P1 oscillation frequency through varying the modulation frequency of the CL optical injection. As a result, a stable FMCW microwave at a central frequency of up to 40 GHz is generated with its frequency varying linearly, triangularly, or step-wisely over a range of 4 GHz during a repeated time period that can be reconfigured at least from 100 ns to 10 ms. This system is capable of operation up to at least 100 GHz.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Doppler-free coherent detection using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF links

Yu-Han Hung, Jhih-Heng Yan, Kai-Ming Feng, and Sheng-Kwang Hwang
Opt. Lett. 44(3) 602-605 (2019)

Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection

Yu-Han Hung, Jhih-Heng Yan, Kai-Ming Feng, and Sheng-Kwang Hwang
Opt. Lett. 42(12) 2402-2405 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.