Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Performance enhancement using a stable low-pretilt molecular configuration and a novel driving method for optically compensated bend liquid crystal devices

Not Accessible

Your library or personal account may give you access

Abstract

A stable low-pretilt molecular configuration (SLPMC) is successfully developed in optically compensated bend (OCB) liquid crystal (LC) devices by simultaneously employing the curing voltage and surface-anchored crosslinking monomer during the polymerization process. For the SLPMC OCB cell with the low-bend state, the warm-up voltage making the LC molecules reorient from the splay to the bend state is annihilated, and the transient twist state occurring as the driven LC molecules recover from the bend to the splay state is also eliminated. In addition, with the novel driving method selecting the specific driving point, the proposed SLPMC OCB cell not only exhibits a good response performance, but also outputs a higher light transmittance, which is superior to the conventional OCB and no-bias-bend cells. This Letter demonstrates an effective SLPMC fabrication method, and points out the significant contributions of SLPMC on the electro-optical properties, which will benefit and enhance the performance design in OCB-based applications.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Development of tunable electro-optical properties on U-shaped-alignment in-plane switching liquid crystal devices

Guan-Jhong Lin, Tien-Jung Chen, Yi-Wei Tsai, and Jin-Jei Wu
Opt. Mater. Express 7(7) 2461-2470 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.