Abstract

Surface plasmon polariton (SPP) is an electromagnetic excitation with efficient spatial confinement and high local field intensity at a metal/dielectric interface, which has been widely applied in many fields such as nanophotonics, imaging, biosensing, nonlinear optics, and so on. However, the destructive interference, which arises from wavevector mismatching between the spatial components of incident light and SPP, limits the effective excitation of SPP. Here, we experimentally demonstrate the enhancement of SPP excitation via a feedback-based wavefront shaping method in the Kreschmann configuration. After optimizing the phase profile of the incident laser beam, the intensity is enhanced by a factor of 1.58 times even at the resonance angle of the fundamental mode Gaussian beam. Besides, the influences of different conditions for the enhancement of SPP excitation are also analyzed. This work provides a flexible and convenient method to further enhance the SPP excitation, and it may have the application of further enhancement of the interaction between SPP and other physical processes.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial control of surface plasmon polariton excitation at planar metal surface

Zhichao Ruan, Hui Wu, Min Qiu, and Shanhui Fan
Opt. Lett. 39(12) 3587-3590 (2014)

Spatial coupled-mode theory for surface plasmon polariton excitation at metallic gratings

Yijie Lou, Hong Pan, Tengfeng Zhu, and Zhichao Ruan
J. Opt. Soc. Am. B 33(5) 819-824 (2016)

A virtual optical probe based on localized Surface Plasmon Polaritons

Emiliano Descrovi, Vincent Paeder, Luciana Vaccaro, and Hans-Peter Herzig
Opt. Express 13(18) 7017-7027 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription