Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

In situ surface-enhanced Raman scattering sensing with soft and flexible polymer optical fiber probes

Not Accessible

Your library or personal account may give you access

Abstract

Surface enhanced Raman scattering (SERS) fiber sensors have shown great potential in sensitive biosensing and medical diagnostics. However, current SERS fiber probes are most commonly based on stiff silica fibers, which, unfortunately, are not mechanically compliant with soft biological tissues. In addition, the poor biocompatibility of silica fibers sets another barrier that hinders their development for biomedical applications. Here, we present, to the best of our knowledge, the first demonstration of soft-polymer-optical-fiber-based SERS (SPOF-SERS) probes with physio-mechanical properties suitable for implantation, and demonstrate their potential applications for in situ detection of bioanalysts. The SPOFs are made from porous hydrogel materials that are soft, elastic, and biocompatible. The three-dimensional porous structures of the hydrogels enable high loading of metal nanoparticles to provide a large amount of SERS “hot spots” for high sensitivity. We tested the SPOF-SERS sensor for detection and discrimination of rhodamine 6G and 4-mercaptopyridine in situ with detection limits of 107M and 108M, respectively. We also demonstrated the capability of SPOF-SERS probes in multiplexing detection. The soft, biocompatible, and highly sensitive SERS probe is promising for bioanalytical and implantable biomedical applications.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Micro-lensed optical fibers for a surface-enhanced Raman scattering sensing probe

Karolina Milenko, Silje S. Fuglerud, Snorre B. Kjeldby, Reinold Ellingsen, Astrid Aksnes, and Dag R. Hjelme
Opt. Lett. 43(24) 6029-6032 (2018)

Print metallic nanoparticles on a fiber probe for 1064-nm surface-enhanced Raman scattering

Ana Sánchez-Solís, Farzia Karim, Md Shah Alam, Qiwen Zhan, Tzarara López-Luke, and Chenglong Zhao
Opt. Lett. 44(20) 4997-5000 (2019)

Optofluidic in-fiber integrated surface-enhanced Raman spectroscopy detection based on a hollow optical fiber with a suspended core

Danheng Gao, Xinghua Yang, Pingping Teng, Zhihai Liu, Jun Yang, Depeng Kong, Jianzhong Zhang, Meng Luo, Zhanao Li, Fengjun Tian, and Libo Yuan
Opt. Lett. 44(21) 5173-5176 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.