Abstract

The sensing performance of one-dimensional magnetic nanograting based on magnetoplasmons was investigated. The predictable Kerr reversal and enhancement are achieved in our experiment. The further result shows that the shift of the Kerr null point has a linear relationship with the surrounding refractive index in a wide range. In addition, a huge figure of merit (FoM) of 1728/refractive index unit is achieved, which is 1 order of magnitude higher than the results reported. The experiment and theory confirm that the excitation of surface plasmons leads to the Kerr reversal and enhancement, resulting in a huge FoM.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity

Lei Chen, Yumin Liu, Zhongyuan Yu, Dong Wu, Rui Ma, Yang Zhang, and Han Ye
Opt. Express 24(9) 9975-9983 (2016)

Boosting figures of merit of cavity plasmon resonance based refractive index sensing in dielectric-metal core-shell resonators

Zhiqin Li, Ren Sun, Chi Zhang, Mingjie Wan, Ping Gu, Qi Shen, Zhuo Chen, and Zhenling Wang
Opt. Express 24(17) 19895-19904 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription