Abstract

We demonstrate a thermally tunable surface nanoscale axial photonics (SNAP) platform. Stable tuning is achieved by heating a SNAP structure fabricated on the surface of a silica capillary with a metal wire positioned inside. Heating a SNAP microresonator with a uniform wire introduces uniform variation of its effective radius which results in constant shift of its resonance wavelengths. Heating with a nonuniform wire allows local nanoscale variation of the capillary effective radius, which enables differential tuning of the spectrum of SNAP structures, as well as the creation of temporary SNAP microresonators that exist only when current is applied. As an example, we fabricate two bottle microresonators coupled to each other and demonstrate differential tuning of their resonance wavelengths into and out of degeneracy with precision better than 0.2 pm. The developed approach is beneficial for ultra-precise fabrication of tunable ultralow loss parity-time symmetric, optomechanical, and cavity quantum electrodynamics (QED) devices.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
SNAP microresonators introduced by strong bending of optical fibers

Daria Bochek, Nikita Toropov, Ilya Vatnik, Dmitry Churkin, and Misha Sumetsky
Opt. Lett. 44(13) 3218-3221 (2019)

Discovery of parabolic microresonators produced via fiber tapering

Dashiell L. P. Vitullo, Gabriella Gardosi, Sajid Zaki, Kirill V. Tokmakov, Michael Brodsky, and Misha Sumetsky
Opt. Lett. 43(20) 4977-4980 (2018)

Rectangular SNAP microresonator fabricated with a femtosecond laser

Qi Yu, Sajid Zaki, Yong Yang, Nikita Toropov, Xuewen Shu, and Misha Sumetsky
Opt. Lett. 44(22) 5606-5609 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, Opt. Switch. Netw. 5, 10 (2008).
    [Crossref]
  2. W. Bogaerts, M. Fiers, and P. Dumon, IEEE J. Sel. Top. Quantum Electron. 20, 1 (2014).
    [Crossref]
  3. M. Sumetsky, Phys. Rev. Lett. 111, 1 (2013).
    [Crossref]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
    [Crossref]
  5. V. Dvoyrin and M. Sumetsky, Opt. Lett. 41, 5547 (2016).
    [Crossref]
  6. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, Nat. Commun. 2, 403 (2011).
    [Crossref]
  7. J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nat. Photonics 8, 965 (2014).
    [Crossref]
  8. T. G. Tiecke, J. D. Thompson, N. P. De Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
    [Crossref]
  9. J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R. Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, Opt. Express 25, 21275 (2017).
    [Crossref]
  10. D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, J. Opt. 18, 123002 (2016).
    [Crossref]
  11. A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).
    [Crossref]
  12. B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
    [Crossref]
  13. L. Feng, R. El-Ganainy, and L. Ge, Nat. Photonics 11, 752 (2017).
    [Crossref]
  14. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
    [Crossref]
  15. K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, Opt. Express 19, 17966 (2011).
    [Crossref]
  16. R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, Opt. Lett. 37, 4762 (2012).
    [Crossref]
  17. N. A. Toropov and M. Sumetsky, Opt. Lett. 41, 2278 (2016).
    [Crossref]
  18. M. Sumetsky, Nanophotonics 2, 393 (2013).
    [Crossref]
  19. A. Dmitriev, N. Toropov, and M. Sumetsky, IEEE Photonics Conference IPC (2015).
  20. M. J. Weber, Handbook of Optical Materials, Laser & Optical Science & Technology (Taylor & Francis, 2002).
  21. K. R. Williams, K. Gupta, and M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003).
    [Crossref]
  22. M. J. Hartmann, F. G. Brandão, and M. B. Plenio, Laser Photonics Rev. 2, 527 (2008).
    [Crossref]

2017 (2)

2016 (3)

N. A. Toropov and M. Sumetsky, Opt. Lett. 41, 2278 (2016).
[Crossref]

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, J. Opt. 18, 123002 (2016).
[Crossref]

V. Dvoyrin and M. Sumetsky, Opt. Lett. 41, 5547 (2016).
[Crossref]

2015 (1)

A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]

2014 (4)

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

W. Bogaerts, M. Fiers, and P. Dumon, IEEE J. Sel. Top. Quantum Electron. 20, 1 (2014).
[Crossref]

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nat. Photonics 8, 965 (2014).
[Crossref]

T. G. Tiecke, J. D. Thompson, N. P. De Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
[Crossref]

2013 (2)

M. Sumetsky, Nanophotonics 2, 393 (2013).
[Crossref]

M. Sumetsky, Phys. Rev. Lett. 111, 1 (2013).
[Crossref]

2012 (2)

2011 (3)

K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, Opt. Express 19, 17966 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, Nat. Commun. 2, 403 (2011).
[Crossref]

2008 (2)

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, Opt. Switch. Netw. 5, 10 (2008).
[Crossref]

M. J. Hartmann, F. G. Brandão, and M. B. Plenio, Laser Photonics Rev. 2, 527 (2008).
[Crossref]

2003 (1)

K. R. Williams, K. Gupta, and M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003).
[Crossref]

Baehr-Jones, T.

Bahl, G.

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, Nat. Commun. 2, 403 (2011).
[Crossref]

Barbour, R. J.

Bender, C. M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Blumenthal, D. J.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, Opt. Switch. Netw. 5, 10 (2008).
[Crossref]

Bogaerts, W.

W. Bogaerts, M. Fiers, and P. Dumon, IEEE J. Sel. Top. Quantum Electron. 20, 1 (2014).
[Crossref]

Bowers, J. E.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, Opt. Switch. Netw. 5, 10 (2008).
[Crossref]

Brandão, F. G.

M. J. Hartmann, F. G. Brandão, and M. B. Plenio, Laser Photonics Rev. 2, 527 (2008).
[Crossref]

Bunandar, D.

Burmeister, E. F.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, Opt. Switch. Netw. 5, 10 (2008).
[Crossref]

Canciamilla, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[Crossref]

Carmon, T.

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, Nat. Commun. 2, 403 (2011).
[Crossref]

Chormaic, S. N.

Coppola, S.

De Leon, N. P.

T. G. Tiecke, J. D. Thompson, N. P. De Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[Crossref]

Dinyari, K. N.

Dmitriev, A.

A. Dmitriev, N. Toropov, and M. Sumetsky, IEEE Photonics Conference IPC (2015).

Dumon, P.

W. Bogaerts, M. Fiers, and P. Dumon, IEEE J. Sel. Top. Quantum Electron. 20, 1 (2014).
[Crossref]

Dvoyrin, V.

El-Ganainy, R.

L. Feng, R. El-Ganainy, and L. Ge, Nat. Photonics 11, 752 (2017).
[Crossref]

Englund, D.

Fan, S.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Feng, L.

L. Feng, R. El-Ganainy, and L. Ge, Nat. Photonics 11, 752 (2017).
[Crossref]

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[Crossref]

Ferraro, P.

Fiers, M.

W. Bogaerts, M. Fiers, and P. Dumon, IEEE J. Sel. Top. Quantum Electron. 20, 1 (2014).
[Crossref]

Finizio, A.

Ge, L.

L. Feng, R. El-Ganainy, and L. Ge, Nat. Photonics 11, 752 (2017).
[Crossref]

Gianfreda, M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Golter, D. A.

Grilli, S.

Gupta, K.

K. R. Williams, K. Gupta, and M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003).
[Crossref]

Harris, N. C.

Hartmann, M. J.

M. J. Hartmann, F. G. Brandão, and M. B. Plenio, Laser Photonics Rev. 2, 527 (2008).
[Crossref]

Heuck, M.

Hochberg, M.

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[Crossref]

Junge, C.

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nat. Photonics 8, 965 (2014).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[Crossref]

Lei, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Leuchs, G.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, J. Opt. 18, 123002 (2016).
[Crossref]

Liu, L. R.

T. G. Tiecke, J. D. Thompson, N. P. De Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
[Crossref]

Lloyd, S.

Long, G. L.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Lukin, M. D.

T. G. Tiecke, J. D. Thompson, N. P. De Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
[Crossref]

Lupo, C.

Madugani, R.

Marquardt, C.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, J. Opt. 18, 123002 (2016).
[Crossref]

Matsko, A. B.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, J. Opt. 18, 123002 (2016).
[Crossref]

Melloni, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[Crossref]

Monifi, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Morichetti, F.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[Crossref]

Mower, J.

Nori, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Notaros, J.

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Peng, B.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Plenio, M. B.

M. J. Hartmann, F. G. Brandão, and M. B. Plenio, Laser Photonics Rev. 2, 527 (2008).
[Crossref]

Rauschenbeutel, A.

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nat. Photonics 8, 965 (2014).
[Crossref]

Reiserer, A.

A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]

Rempe, G.

A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]

Riordan, J. D.

Scheucher, M.

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nat. Photonics 8, 965 (2014).
[Crossref]

Schwefel, H. G. L.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, J. Opt. 18, 123002 (2016).
[Crossref]

Steinbrecher, G. R.

Strekalov, D. V.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, J. Opt. 18, 123002 (2016).
[Crossref]

Sumetsky, M.

N. A. Toropov and M. Sumetsky, Opt. Lett. 41, 2278 (2016).
[Crossref]

V. Dvoyrin and M. Sumetsky, Opt. Lett. 41, 5547 (2016).
[Crossref]

M. Sumetsky, Nanophotonics 2, 393 (2013).
[Crossref]

M. Sumetsky, Phys. Rev. Lett. 111, 1 (2013).
[Crossref]

A. Dmitriev, N. Toropov, and M. Sumetsky, IEEE Photonics Conference IPC (2015).

Thompson, J. D.

T. G. Tiecke, J. D. Thompson, N. P. De Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
[Crossref]

Tiecke, T. G.

T. G. Tiecke, J. D. Thompson, N. P. De Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
[Crossref]

Tomes, M.

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, Nat. Commun. 2, 403 (2011).
[Crossref]

Toropov, N.

A. Dmitriev, N. Toropov, and M. Sumetsky, IEEE Photonics Conference IPC (2015).

Toropov, N. A.

Vespini, V.

Volz, J.

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nat. Photonics 8, 965 (2014).
[Crossref]

Vuletic, V.

T. G. Tiecke, J. D. Thompson, N. P. De Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
[Crossref]

Wang, H.

Ward, J. M.

Wasilik, M.

K. R. Williams, K. Gupta, and M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003).
[Crossref]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials, Laser & Optical Science & Technology (Taylor & Francis, 2002).

Williams, K. R.

K. R. Williams, K. Gupta, and M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003).
[Crossref]

Yang, L.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Yang, Y.

Zehnpfennig, J.

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, Nat. Commun. 2, 403 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, M. Fiers, and P. Dumon, IEEE J. Sel. Top. Quantum Electron. 20, 1 (2014).
[Crossref]

J. Microelectromech. Syst. (1)

K. R. Williams, K. Gupta, and M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003).
[Crossref]

J. Opt. (1)

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, J. Opt. 18, 123002 (2016).
[Crossref]

Laser Photonics Rev. (2)

M. J. Hartmann, F. G. Brandão, and M. B. Plenio, Laser Photonics Rev. 2, 527 (2008).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[Crossref]

Nanophotonics (1)

M. Sumetsky, Nanophotonics 2, 393 (2013).
[Crossref]

Nat. Commun. (1)

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, Nat. Commun. 2, 403 (2011).
[Crossref]

Nat. Photonics (2)

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nat. Photonics 8, 965 (2014).
[Crossref]

L. Feng, R. El-Ganainy, and L. Ge, Nat. Photonics 11, 752 (2017).
[Crossref]

Nat. Phys. (1)

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[Crossref]

Nature (1)

T. G. Tiecke, J. D. Thompson, N. P. De Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Switch. Netw. (1)

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, Opt. Switch. Netw. 5, 10 (2008).
[Crossref]

Phys. Rev. Lett. (1)

M. Sumetsky, Phys. Rev. Lett. 111, 1 (2013).
[Crossref]

Rev. Mod. Phys. (1)

A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[Crossref]

Other (2)

A. Dmitriev, N. Toropov, and M. Sumetsky, IEEE Photonics Conference IPC (2015).

M. J. Weber, Handbook of Optical Materials, Laser & Optical Science & Technology (Taylor & Francis, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Illustration of stable tuning using a uniform wire inside a capillary with a laser-induced SNAP resonator, monitored with a tapered fiber. Objects are not to scale. (b) Resonance wavelength tuning of a single microresonator mode over Δ λ = 0.6    nm . (c) Resonance wavelength versus current I . The points are measured values, and the red line shows the best parabolic fit λ ( I ) = 1551.8 + 6.6432 × 10 6 I 2 .
Fig. 2.
Fig. 2. Temporary SNAP spectrograms with identical wavelength and distance ranges sampled on a uniform position grid with 5 μm spacing. We observe repeatable microresonator induction and annihilation, and present spectrograms of the microresonator at (a)  I = 0    mA , (b)  I = 125    mA , and (c)  I = 150    mA . Subfigures (b) and (c) show the same axial mode series, which is below the wavelength window of (a).
Fig. 3.
Fig. 3. (a) Illustration of differentially tunable coupled SNAP microresonators. An etched wire is placed in a capillary with two coupled SNAP microresonators on the surface. The waist of the etched region is positioned to heat the left resonator more than the right resonator. Objects are not to scale. (b) Spectrogram of the coupled microresonators with no applied current. The left and right fundamental axial resonances are labeled L and R , respectively. Positioning the probe on the dashed line monitors the resonance wavelengths of all modes simultaneously. The spectral resolution is 141 fm, and the grid spacing is 5 μm. This mode structure is theoretically reconstructed in (c) with the ERV profile (in wavelength scale) overlaid in blue. (d) Measured spectrogram with heating current I = 122    mA . The grid spacing is 4 μm, and the spectral resolution is 8 fm (1 MHz). Heating causes additional unwanted coupling of a neighboring feature into the original mode structure, but this does not affect the splitting of L and R . (e) Theoretical reconstruction of (d). The effective radius differs from (c) by a linear heating profile only. The profile indicates that the temperature change from Eq. (1) is Δ T L = 10.64 ° C at peak L , and Δ T R = 10.19 ° C at R .
Fig. 4.
Fig. 4. Controlling the separation of fundamental resonance wavelengths λ R λ L , with nonuniform heating. (a) Spectra showing resonant transmission dips for L and R at several current settings. All resonances are shifted to higher wavelengths as the capillary is heated, but L is shifted more than R as it is closer to the wire waist. (b) Shifts common to both L and R are subtracted by translating the wavelengths such that all the resonances of mode R overlap at zero separation, revealing the separation as a function of current. (c) Separation δ λ ( I ) = λ R ( I ) λ L ( I ) versus current I . Tuning is parabolic as a function of current, since Δ T P = I 2 R . Thus, the red curve is the best parabolic fit δ λ ( I ) = 5.927 4.954 × 10 4 I 2 of the blue points, which represent measured values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ T = n 0 ( d n d T ) 1 Δ λ λ 0 ,
P ( z ) = I 2 R ( z ) .

Metrics