Abstract

A modal interferometer by a single mechanically induced long-period fiber grating (MI-LPFG) using a half-length coating fiber is presented. The coating material used for this Letter is a film of silica nanoparticles doped with an organic chromophore. The silica nanoparticles, with diameters within the range of 40–50 nm, were deposited over 3.5 cm length of fiber by the dip-coating method, forming a film with a thickness between 500 and 1250 nm. Then the modal interferometer was implemented by inscribing the MI-LPFG over the coated fiber section and a similar fiber length of the uncoated fiber. The experimental results show high-contrast transmission bands, where the position and depth of the absorption envelope band are finely selected by the grating period, the pressure applied, and the film thickness. The novel modal interferometer architecture based on a single MI-LPFG, combined with a functionalized nanoparticles coating film, offers an attractive platform for the development of fiber sensors and other fiber-based devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long period grating assistant photonic crystal fiber modal interferometer

Zhoulu Sun, Yan-ge Liu, Zhi Wang, Boyin Tai, Tingting Han, Bo Liu, Wentao Cui, Huifeng Wei, and Weijun Tong
Opt. Express 19(14) 12913-12918 (2011)

Widely tunable LP11 cladding-mode resonance in a twisted mechanically induced long-period fiber grating

Anitha S. Nair, V. P. Sudeep Kumar, and Hubert Joe
Appl. Opt. 54(8) 2007-2010 (2015)

TPA-induced long-period gratings in a photonic crystal fiber: inscription and temperature sensing properties

Andrei A. Fotiadi, Gilberto Brambilla, Thomas Ernst, Stephen A. Slattery, and David N. Nikogosyan
J. Opt. Soc. Am. B 24(7) 1475-1481 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription