Abstract

Rigorous electromagnetic computations required for the calculation of high-resolution monochromatic bulk integral optical properties of irregular atmospheric particles are onerous in memory and in time requirements. Here, it is shown that from a set of 145 monochromatic bulk integral ice optical properties, it is possible to reduce the set to eight hinge wavelengths by using the method of principal component analysis (PCA) regression. From the eight hinge wavelengths, the full set can be reconstructed to within root mean square errors of 1%. To obtain optimal reconstruction, the training set must cover as wide a range of parameter space as possible. Rigorous electromagnetic methods can now be routinely applied to represent accurately the integral optical properties of atmospheric particles in climate models.

Full Article  |  PDF Article
OSA Recommended Articles
Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principal component analysis

Martin de Graaf, Arnoud Apituley, and David P. Donovan
Appl. Opt. 52(10) 2173-2186 (2013)

Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations

Michael Kahnert, Timo Nousiainen, Hannakaisa Lindqvist, and Martin Ebert
Opt. Express 20(9) 10042-10058 (2012)

Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes

Chiara Levoni, Marco Cervino, Rodolfo Guzzi, and Francesca Torricella
Appl. Opt. 36(30) 8031-8041 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription