Abstract

A significant enhancement of photoresponse from the light-controlled conductive switching based on Cu2O/rGO nanocomposites was experimentally demonstrated. Cu2O/rGO nanocomposites were synthesized via a facile wet-reduced method. The crystalline structure, morphologies, and photoluminescence of the Cu2O/rGO nanocomposites were characterized and analyzed. The fabricated conductive switching was measured under the irradiation of a continuous laser. When the laser was turned on and off alternately, the photoconductive switching obviously displayed a state conversion between “on” and “off” reversibly. Furthermore, the typical current–voltage (I–V) and current–time (I–t) curves exhibited a relatively high switching ratio (Ion/Ioff) of 3.25 and a fast response time of 0.45 s. The excellent “on–off” characteristics of the device show promising applications in memory storage and logic circuits.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Facile fabrication of flexible graphene FETs by sunlight reduction of graphene oxide

Jia-Nan Ma, Yan He, Yan Liu, Dong-Dong Han, Yu-Qing Liu, Jiang-Wei Mao, Hao-Bo Jiang, and Yong-Lai Zhang
Opt. Lett. 42(17) 3403-3406 (2017)

High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA

Zhenyu You, Yijian Sun, Dunlu Sun, Zaojie Zhu, Yan Wang, Jianfu Li, Chaoyang Tu, and Jinlong Xu
Opt. Lett. 42(4) 871-874 (2017)

Improved performance of transparent-conducting AZO/Cu/AZO multilayer thin films by inserting a metal Ti layer for flexible electronics

Shihui Yu, Yifan Liu, Haoran Zheng, Lingxia Li, and Yongtao Sun
Opt. Lett. 42(15) 3020-3023 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics