Abstract

Back focal plane (BFP) interferometry is frequently used to detect the motion of a single laser trapped bead in a photonic force microscope (PFM) system. Whereas this method enables high-speed and high-resolution position measurement, its measurement range is limited by nonlinearity coupled with crosstalk in three-dimensional (3-D) measurement, and validation of its measurement accuracy is not trivial. This Letter presents an automated calibration system in conjunction with a 3-D quadratic model to render rapid and accurate calibration of the laser measurement system. An actively controlled three-axis laser steering system and a high-speed vision-based 3-D particle tracking system are integrated to the PFM system to enable rapid calibration. The 3-D quadratic model is utilized to correct for nonlinearity and crosstalk and, thus, extend the 3-D position detection volume of BFP interferometry. We experimentally demonstrated a 12-fold increase in detection volume when applying the method to track the motion of a 2.0 μm laser trapped polystyrene bead.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Using back focal plane interferometry to probe the influence of Zernike aberrations in optical tweezers

Thomas F. Dixon, Lachlan W. Russell, Ana Andres-Arroyo, and Peter J. Reece
Opt. Lett. 42(15) 2968-2971 (2017)

Moiré deflectometry-based position detection for optical tweezers

Ali Akbar Khorshad, S. Nader S. Reihani, and Mohammad Taghi Tavassoly
Opt. Lett. 42(17) 3506-3509 (2017)

Back-focal-plane position detection with extended linear range for photonic force microscopy

Ignacio A. Martínez and Dmitri Petrov
Appl. Opt. 51(25) 5973-5977 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription