Abstract

A robust plasmonic semiconductor-based Mach–Zehnder interferometer (MZI), which consists of a semiconductor layer with a microslit flanked by two identical microgrooves, is proposed and investigated for the terahertz sensing. The microgrooves reflect the surface plasmon polariton waves toward the microslit, where they interfere with the transmitted terahertz wave. The interference pattern is determined by the permittivities of the sensing material and semiconductor (i.e., temperature dependent), making the structure useful for the refractive index (RI) and temperature detection. A quantitative theoretical model is also developed for performance prediction and validated with a finite element method. The numerical results show that the Mach–Zehnder interferometer sensor possesses an RI sensitivity as high as 140000nm/RIU (or 0.42THz/RIU) and a relative intensity sensitivity of 1200%RIU1. In addition, a temperature sensitivity of 1470nm/K (or 4.7×103THz/K) is determined. Theoretical calculations indicate that the further improvement in sensing performance is still possible through optimization of the structure. The proposed sensing scheme may pave the way for applications in terahertz sensing and integrated terahertz circuits.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Plasmonic tapered-fiber interference sensor for simultaneously detecting refractive index and temperature

Xinghong Chen, Xuejin Li, Duo Yi, Xueming Hong, and Yuzhi Chen
Opt. Lett. 46(24) 6071-6074 (2021)

Highly sensitive temperature sensor based on an ultra-compact Mach–Zehnder interferometer with side-opened channels

Ming Deng, Leiguang Liu, Yong Zhao, Guolu Yin, and Tao Zhu
Opt. Lett. 42(18) 3549-3552 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics