Abstract

A planar terahertz metamaterial consisting of square split ring resonators is proposed, and the excitation of toroidal dipolar resonance is demonstrated. Moreover, we theoretically investigate the strong interaction between graphene and toroidal dipolar resonance of the metamaterial. By varying its Fermi energy, the simulations show that graphene can actively modulate the transmission amplitude of toroidal dipolar resonance and even switch it off. The interaction of the toroidal dipolar resonance with monolayer graphene further highlights the ultrasensitive sensing characteristic of the planar metamaterial, which can be utilized for other graphene-like two-dimensional materials. These intriguing properties of the proposed metamaterial may have potential applications in terahertz modulators and ultrasensitive sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface

Gui-Dong Liu, Xiang Zhai, Sheng-Xuan Xia, Qi Lin, Chu-Jun Zhao, and Ling-Ling Wang
Opt. Express 25(21) 26045-26054 (2017)

Terahertz toroidal metamaterial with tunable properties

Zhengyong Song, Yide Deng, Yuanguo Zhou, and Zhaoyuan Liu
Opt. Express 27(4) 5792-5797 (2019)

Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials

Jiuxing Jiang, Qinfei Zhang, Qixiang Ma, Shitao Yan, Fengmin Wu, and Xunjun He
Opt. Mater. Express 5(9) 1962-1971 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription