Abstract

Quantum blockades as a nonlinear quantum optical process have been well studied in recent years. Using the quantum trajectory method, we calculate and discuss the output photon number distributions of a single-photon blockade process in a Kerr nonlinear dissipative resonator, revealing that the probability of the single-photon state can be optimized. Then we show through numerical simulations that such a quasi-single-photon source can drastically raise the key rate in the decoy-state quantum key distribution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-Poissonian statistics from Poissonian light sources with application to passive decoy state quantum key distribution

Marcos Curty, Tobias Moroder, Xiongfeng Ma, and Norbert Lütkenhaus
Opt. Lett. 34(20) 3238-3240 (2009)

Biased three-intensity decoy-state scheme on the measurement-device-independent quantum key distribution using heralded single-photon sources

Chun-Hui Zhang, Chun-Mei Zhang, Guang-Can Guo, and Qin Wang
Opt. Express 26(4) 4219-4229 (2018)

Measurement-device-independent quantum key distribution with modified coherent state

Mo Li, Chun-Mei Zhang, Zhen-Qiang Yin, Wei Chen, Shuang Wang, Guang-Can Guo, and Zheng-Fu Han
Opt. Lett. 39(4) 880-883 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription