Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Vortex-enhanced coherent-illumination phase diversity for phase retrieval in coherent imaging systems

Not Accessible

Your library or personal account may give you access

Abstract

We propose a phase-retrieval method based on the numerical optimization of a new objective function using coherent phase-diversity images as inputs for the characterization of aberrations in coherent imaging systems. By employing a spatial light modulator to generate multiple-order spiral phase masks as diversities, we obtain an increase in the accuracy of the retrieved phase compared with similar state-of-the-art phase-retrieval techniques that use the same number of input images. We present simulations that show a consistent advantage of our technique, and experimental validation where our implementation is used to characterize a highly aberrated 4F optical system.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Transverse translation diverse phase retrieval using soft-edged illumination

Aaron M. Michalko and James R. Fienup
Opt. Lett. 43(6) 1331-1334 (2018)

Single-shot phase retrieval with complex diversity

Akira Eguchi and Tom D. Milster
Opt. Lett. 44(21) 5108-5111 (2019)

Enhanced intensity variation for multiple-plane phase retrieval using a spatial light modulator as a convenient tunable diffuser

Percival F. Almoro, Quang Duc Pham, David Ignacio Serrano-Garcia, Satoshi Hasegawa, Yoshio Hayasaki, Mitsuo Takeda, and Toyohiko Yatagai
Opt. Lett. 41(10) 2161-2164 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.