Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simultaneous three-dimensional velocimetry and thermometry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique

Abstract

We present a demonstration of the simultaneous measurement of spatially resolved three-component velocity and temperature in gaseous flow fields using a variant of the vibrationally excited nitric oxide monitoring (VENOM) technique, based on planar laser induced fluorescence and molecular tagging velocimetry methods. Three-component velocity determinations were derived from two-dimensional molecular tagging velocity measurements employing sequential fluorescence image pairs obtained simultaneously by two cameras in stereoscopic configuration. Probing two different rotational states of nitric oxide (X2, υ=1), produced via fluorescence and collisional quenching from initial excitation to the A Σ+2 state, for the sequential velocimetry images allows simultaneous determination of the temperature field. Experimental measurements of velocity and temperature across an oblique shock result in mean values within 21 m/s for the three components of velocity and 20 K for planar temperature when compared to oblique shock calculations.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Vibrationally excited NO tagging by NO(A2Σ+) fluorescence and quenching for simultaneous velocimetry and thermometry in gaseous flows

Rodrigo Sánchez-González, Rodney D. W. Bowersox, and Simon W. North
Opt. Lett. 39(9) 2771-2774 (2014)

Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique

Rodrigo Sánchez-González, Ravi Srinivasan, Rodney D. W. Bowersox, and Simon W. North
Opt. Lett. 36(2) 196-198 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.