Abstract

We propose a hybrid spatiotemporal three-dimensional phase unwrapping algorithm for use in digital speckle pattern interferometry (DSPI). The feature of the proposed algorithm is the integration of one-dimensional temporal and two-dimensional spatial phase unwrapping algorithms. By demodulating the phase on a single reference point or multiple reference points using temporal phase unwrapping and on each separated phase map region using spatial phase unwrapping, the DSPI with the spatiotemporal three-dimensional phase unwrapping algorithm can realize the measurement of dynamic absolute displacements and the determination of abrupt phase changes which are usually caused by object discontinuities. We demonstrate that the presented algorithm can overcome the drawbacks of the traditional spatial and temporal phase unwrapping algorithms.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase unwrapping for dual-beam electronic speckle pattern interferometry: method

S. Yoshida, Suprapedi, R. Widiastuti, Marincan, Septriyanti, Julinda, A. Faisal, and A. Kusnowo
Appl. Opt. 36(1) 266-270 (1997)

Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS)

Basanta Bhaduri, N. Krishna Mohan, M. P. Kothiyal, and R.S. Sirohi
Opt. Express 14(24) 11598-11607 (2006)

References

  • View by:
  • |
  • |
  • |

  1. T. M. Venema and J. D. Schmidt, Opt. Express 16, 6985 (2008).
    [Crossref]
  2. H. Y. H. Huang, L. Tian, Z. Zhang, Y. Liu, Z. Chen, and G. Barbastathis, Opt. Express 20, 14075 (2012).
    [Crossref]
  3. J. C. de Souza, M. E. Oliveira, and P. A. M. dos Santos, Opt. Lett. 40, 3456 (2015).
  4. A. Khmaladze, T. Epstein, and Z. Chen, Opt. Lett. 35, 1040 (2010).
    [Crossref]
  5. M. A. Navarro, J. C. Estrada, M. Servin, J. A. Quiroga, and J. Vargas, Opt. Express 20, 2556 (2012).
    [Crossref]
  6. Y. Lee, Y. Ito, T. Tahara, J. Inoue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, and O. Matoba, Opt. Lett. 39, 2374 (2014).
    [Crossref]
  7. M. Zhao, H. Wang, and K. Qian, Appl. Opt. 54, 7462 (2015).
    [Crossref]
  8. H. Cui, W. Liao, N. Dai, and X. Cheng, Opt. Eng. 50, 063602 (2011).
    [Crossref]
  9. J. Weng and Y. Lo, Opt. Express 20, 10896 (2012).
    [Crossref]
  10. Y. Wang and S. Zhang, Opt. Lett. 37, 2067 (2012).
    [Crossref]
  11. H. O. Saldner and J. M. Huntley, Appl. Opt. 36, 2770 (1997).
    [Crossref]
  12. B. Li, S. Ma, and Y. Zhai, Appl. Opt. 54, 6282 (2015).
    [Crossref]
  13. M. Servin, J. M. Padilla, A. Gonzalez, and G. Garnica, Opt. Express 23, 15806 (2015).
    [Crossref]
  14. X. Xie, N. Xu, J. Sun, Y. Wang, and L. Yang, Opt. Commun. 286, 277 (2012).
    [Crossref]
  15. H. Zhang, M. J. Lalor, and D. R. Burton, Appl. Opt. 38, 3534 (1999).
    [Crossref]
  16. M. Untenberger, M. Hüllebrand, L. Tautz, A. A. Joseph, D. Voit, K. Dietmar Merboldt, and J. Frahm, Magn. Reson. Med. 74, 964 (2015).
    [Crossref]
  17. X. Li, Z. Huang, M. Zhu, J. He, and H. Zhang, Opt. Eng. 53, 124104 (2014).
    [Crossref]
  18. J. M. Huntley, Appl. Opt. 40, 3901 (2001).
    [Crossref]
  19. M. Gdeisat, M. Arevalillo-Herráez, D. Burton, and F. Lilley, Opt. Lett. 34, 2994 (2009).
    [Crossref]

2015 (5)

2014 (2)

2012 (5)

2011 (1)

H. Cui, W. Liao, N. Dai, and X. Cheng, Opt. Eng. 50, 063602 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2001 (1)

1999 (1)

1997 (1)

Arevalillo-Herráez, M.

Awatsuji, Y.

Barbastathis, G.

Burton, D.

Burton, D. R.

Chen, Z.

Cheng, X.

H. Cui, W. Liao, N. Dai, and X. Cheng, Opt. Eng. 50, 063602 (2011).
[Crossref]

Cui, H.

H. Cui, W. Liao, N. Dai, and X. Cheng, Opt. Eng. 50, 063602 (2011).
[Crossref]

Dai, N.

H. Cui, W. Liao, N. Dai, and X. Cheng, Opt. Eng. 50, 063602 (2011).
[Crossref]

de Souza, J. C.

Dietmar Merboldt, K.

M. Untenberger, M. Hüllebrand, L. Tautz, A. A. Joseph, D. Voit, K. Dietmar Merboldt, and J. Frahm, Magn. Reson. Med. 74, 964 (2015).
[Crossref]

dos Santos, P. A. M.

Epstein, T.

Estrada, J. C.

Frahm, J.

M. Untenberger, M. Hüllebrand, L. Tautz, A. A. Joseph, D. Voit, K. Dietmar Merboldt, and J. Frahm, Magn. Reson. Med. 74, 964 (2015).
[Crossref]

Garnica, G.

Gdeisat, M.

Gonzalez, A.

He, J.

X. Li, Z. Huang, M. Zhu, J. He, and H. Zhang, Opt. Eng. 53, 124104 (2014).
[Crossref]

Huang, H. Y. H.

Huang, Z.

X. Li, Z. Huang, M. Zhu, J. He, and H. Zhang, Opt. Eng. 53, 124104 (2014).
[Crossref]

Hüllebrand, M.

M. Untenberger, M. Hüllebrand, L. Tautz, A. A. Joseph, D. Voit, K. Dietmar Merboldt, and J. Frahm, Magn. Reson. Med. 74, 964 (2015).
[Crossref]

Huntley, J. M.

Inoue, J.

Ito, Y.

Joseph, A. A.

M. Untenberger, M. Hüllebrand, L. Tautz, A. A. Joseph, D. Voit, K. Dietmar Merboldt, and J. Frahm, Magn. Reson. Med. 74, 964 (2015).
[Crossref]

Khmaladze, A.

Lalor, M. J.

Lee, Y.

Li, B.

Li, X.

X. Li, Z. Huang, M. Zhu, J. He, and H. Zhang, Opt. Eng. 53, 124104 (2014).
[Crossref]

Liao, W.

H. Cui, W. Liao, N. Dai, and X. Cheng, Opt. Eng. 50, 063602 (2011).
[Crossref]

Lilley, F.

Liu, Y.

Lo, Y.

Ma, S.

Matoba, O.

Navarro, M. A.

Nishio, K.

Oliveira, M. E.

Padilla, J. M.

Qian, K.

Quiroga, J. A.

Saldner, H. O.

Schmidt, J. D.

Servin, M.

Sun, J.

X. Xie, N. Xu, J. Sun, Y. Wang, and L. Yang, Opt. Commun. 286, 277 (2012).
[Crossref]

Tahara, T.

Tautz, L.

M. Untenberger, M. Hüllebrand, L. Tautz, A. A. Joseph, D. Voit, K. Dietmar Merboldt, and J. Frahm, Magn. Reson. Med. 74, 964 (2015).
[Crossref]

Tian, L.

Untenberger, M.

M. Untenberger, M. Hüllebrand, L. Tautz, A. A. Joseph, D. Voit, K. Dietmar Merboldt, and J. Frahm, Magn. Reson. Med. 74, 964 (2015).
[Crossref]

Ura, S.

Vargas, J.

Venema, T. M.

Voit, D.

M. Untenberger, M. Hüllebrand, L. Tautz, A. A. Joseph, D. Voit, K. Dietmar Merboldt, and J. Frahm, Magn. Reson. Med. 74, 964 (2015).
[Crossref]

Wang, H.

Wang, Y.

Y. Wang and S. Zhang, Opt. Lett. 37, 2067 (2012).
[Crossref]

X. Xie, N. Xu, J. Sun, Y. Wang, and L. Yang, Opt. Commun. 286, 277 (2012).
[Crossref]

Weng, J.

Xia, P.

Xie, X.

X. Xie, N. Xu, J. Sun, Y. Wang, and L. Yang, Opt. Commun. 286, 277 (2012).
[Crossref]

Xu, N.

X. Xie, N. Xu, J. Sun, Y. Wang, and L. Yang, Opt. Commun. 286, 277 (2012).
[Crossref]

Yang, L.

X. Xie, N. Xu, J. Sun, Y. Wang, and L. Yang, Opt. Commun. 286, 277 (2012).
[Crossref]

Zhai, Y.

Zhang, H.

X. Li, Z. Huang, M. Zhu, J. He, and H. Zhang, Opt. Eng. 53, 124104 (2014).
[Crossref]

H. Zhang, M. J. Lalor, and D. R. Burton, Appl. Opt. 38, 3534 (1999).
[Crossref]

Zhang, S.

Zhang, Z.

Zhao, M.

Zhu, M.

X. Li, Z. Huang, M. Zhu, J. He, and H. Zhang, Opt. Eng. 53, 124104 (2014).
[Crossref]

Appl. Opt. (5)

Magn. Reson. Med. (1)

M. Untenberger, M. Hüllebrand, L. Tautz, A. A. Joseph, D. Voit, K. Dietmar Merboldt, and J. Frahm, Magn. Reson. Med. 74, 964 (2015).
[Crossref]

Opt. Commun. (1)

X. Xie, N. Xu, J. Sun, Y. Wang, and L. Yang, Opt. Commun. 286, 277 (2012).
[Crossref]

Opt. Eng. (2)

H. Cui, W. Liao, N. Dai, and X. Cheng, Opt. Eng. 50, 063602 (2011).
[Crossref]

X. Li, Z. Huang, M. Zhu, J. He, and H. Zhang, Opt. Eng. 53, 124104 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Optical setup for vibration measurement using DSPI. Cam, camera; BS, beam splitter; VBS, variable beam splitter; IL, image lens; MO, micro-objective; PZT, piezoelectric transducer.
Fig. 2.
Fig. 2. Wrapped phase map corresponding to the peak of the vibration.
Fig. 3.
Fig. 3. Phase distributions in specific positions. (a) Spatial distribution in horizontal direction; (b) spatial distribution in vertical direction; (c) temporal distribution at point A; (d) temporal distribution at point B.
Fig. 4.
Fig. 4. Unwrapped phase maps. (a) Original wrapped phase map; (b) phase map unwrapped using temporal phase unwrapping; (c) phase map unwrapped using spatial phase unwrapping; (d) phase map unwrapped using the spatiotemporal three-dimensional phase unwrapping.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ω s > k Ω m = 2 k π · f ϕ , ( k > 2 ) ,
( f s _ x f s _ y f s _ t ) = ( N x _ pixel Δ x N y _ pixel Δ y N frame Δ t ) > 2 k λ ( D ( x , y , t ) x D ( x , y , t ) y D ( x , y , t ) t ) ,
f car = sin α λ ,

Metrics