Abstract

Scattering scanning near-field optical microscopy (s-SNOM) has been demonstrated as a valuable tool for mapping the optical and optoelectronic properties of materials with nanoscale resolution. Here we report experimental evidence that trapped electric charges injected by an electron beam at the surface of dielectric samples affect the sample–dipole interaction, which has direct impact on the s-SNOM image content. Nanoscale mapping of the surface trapped charge holds significant potential for the precise tailoring of the electrostatic properties of dielectric and semiconductive samples, such as hydroxyapatite, which has particular importance with respect to biomedical applications. The methodology developed here is highly relevant to semiconductor device fabrication as well.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vector near-field calculation of scanning near-field optical microscopy probes using Borgnis potentials as auxiliary functions

Xueen Wang, Zhaozhong Fan, and Tiantong Tang
J. Opt. Soc. Am. A 22(7) 1263-1273 (2005)

Theoretical treatment for scattering scanning near-field optical microscopy

Mufei Xiao
J. Opt. Soc. Am. A 14(11) 2977-2984 (1997)

Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy

A. Cvitkovic, N. Ocelic, and R. Hillenbrand
Opt. Express 15(14) 8550-8565 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription