Abstract

Insight into instabilities of fiber laser regimes leading to complex self-pulsing operations is an opportunity to unlock the high power and dynamic operation tunability of lasers. Though many models have been suggested, there is no complete covering of self-pulsing complexity observed experimentally. Here, I further generalized our previous vector model of erbium-doped fiber laser and, for the first time, to the best of my knowledge, map tunability of complex vector self-pulsing on Poincare sphere (limit cycles and double scroll polarization attractors) for laser parameters, e.g., power, ellipticity of the pump wave, and in-cavity birefringence. Analysis validated by extensive numerical simulations demonstrates good correspondence to the experimental results on complex self-pulsing regimes obtained by many authors during the last 20 years.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Antiphase dynamics and chaos in self-pulsing erbium-doped fiber lasers

P. Le Boudec, C. Jaouen, P. L. François, J.-F. Bayon, F. Sanchez, P. Besnard, and G. Stéphan
Opt. Lett. 18(22) 1890-1892 (1993)

Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz

Michel Olivier and Michel Piché
Opt. Express 24(3) 2336-2349 (2016)

Suppression of self-pulsing in an erbium-doped fiber laser

Liguo Luo and P. L. Chu
Opt. Lett. 22(15) 1174-1176 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription