Abstract

We report a label-free approach toward the object of characterizing the self-rotational motions of red blood cells (RBCs) during storage under the optically-induced electrokinetics-based microfluidics mechanism. A theoretical analysis of the transmembrane potential across RBCs was performed getting a threshold voltage for keeping cellular biological integrity. Then, by investigation of the self-rotational behaviors of the individual RBCs in larger population, the RBCs that were stored more than three weeks statistically showed the distinctive self-rotational speed. Results verified that the self-rotational biomarkers of the RBCs could be used to label-free reckon the qualities of the stored RBCs in this kind of microfluidics chip. This finding may be further developed as a new criterion to real-time and label-free monitoring of the banked blood qualities, thereby diminishing the blood transfusion venture.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid assembly of gold nanoparticle-based microstructures using optically-induced electrokinetics

Wenfeng Liang, Lianqing Liu, Sam Hok-Sum Lai, Yuechao Wang, Gwo-Bin Lee, and Wen Jung Li
Opt. Mater. Express 4(11) 2368-2380 (2014)

Stretching of red blood cells using an electro-optics trap

Md. Mozzammel Haque, Mihaela G. Moisescu, Sándor Valkai, András Dér, and Tudor Savopol
Biomed. Opt. Express 6(1) 118-123 (2015)

Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods

Inkyu Moon, Faliu Yi, Yeon H. Lee, Bahram Javidi, Daniel Boss, and Pierre Marquet
Opt. Express 21(25) 30947-30957 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (14697 KB)      Complete experimental details of Fig. 3

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription