Abstract

We propose a novel architecture for implementing a dual-frequency lidar (DFL) exploiting differential Doppler shift measurement. The two frequency tones, needed for target velocity measurements, are selected from the spectrum of a mode-locked laser operating in the C-band. The tones’ separation is easily controlled by using a programmable wavelength selective switch, thus allowing for a dynamic trade-off among robustness to atmospheric turbulence and sensitivity. Speed measurements for different tone separations equal to 10, 40, 80, and 160 GHz are demonstrated, proving the system’s capability of working in different configurations. Thanks to the acquisition system based on an analog-to-digital converter and digital-signal processing, real-time velocity measurements are demonstrated. The MLL-based proposed architecture enables the integration of the DFL with a photonic-based radar that exploits the same laser for generating and receiving radio-frequency signal with high performance, thus allowing for simultaneous or complementary target observations by exploiting the advantages of both radar and lidar.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Building blocks for a two-frequency laser lidar-radar: a preliminary study

Loïc Morvan, Ngoc D. Lai, Daniel Dolfi, Jean-Pierre Huignard, Marc Brunel, Fabien Bretenaker, and Albert Le Floch
Appl. Opt. 41(27) 5702-5712 (2002)

Lidar detection using a dual-frequency source

Rosemary Diaz, Sze-Chun Chan, and Jia-Ming Liu
Opt. Lett. 31(24) 3600-3602 (2006)

All-fiber-photonics-based ultralow-noise agile frequency synthesizer for X-band radars

Juan Wei, Dohyeon Kwon, Shuangyou Zhang, Shilong Pan, and Jungwon Kim
Photon. Res. 6(1) 12-17 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription