Abstract

The cancellation of resonant intensity noise, from a few kHz up to several GHz, is reported using a second-harmonic generation (SHG) buffer reservoir in a Nd:YAG solid-state laser. This approach is shown to be well suited and easily optimizable for reducing the excess noise lying at the laser relaxation oscillations as well as that originating from the beating between the lasing mode and nonlasing adjacent longitudinal modes. A thorough analysis of noise spectra of both laser and SHG signals confirms definitely that noise reduction is a consequence of a deep laser dynamics modification rather than noise evacuation mechanism.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytical modeling of dual-frequency solid-state lasers including a buffer reservoir for noise cancellation

Kevin Audo, Abdelkrim El Amili, and Mehdi Alouini
Opt. Express 26(7) 8805-8820 (2018)

Buffer reservoir approach for cancellation of laser resonant noises

Abdelkrim El Amili, Goulc’hen Loas, Lucien Pouget, and Mehdi Alouini
Opt. Lett. 39(17) 5014-5017 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription