Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Femtosecond laser-induced surface structures on carbon fibers

Not Accessible

Your library or personal account may give you access

Abstract

The influence of different polarization states during the generation of periodic nanostructures on the surface of carbon fibers was investigated using a femtosecond laser with a pulse duration τ=300fs, a wavelength λ=1025nm, and a peak fluence F=4J/cm2. It was shown that linear polarization results in a well-aligned periodic pattern with different orders of magnitude concerning their period and an alignment parallel and perpendicular to fiber direction, respectively. For circular polarization, both types of uniform laser-induced periodic surface structures (LIPSS) patterns appear simultaneously with different dominance in dependence on the position at the fiber surface. Their orientation was explained by the polarization-dependent absorptivity and the geometrical anisotropy of the carbon fibers.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation

Sandra Höhm, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(20) 25959-25971 (2015)

Controllable formation of laser-induced periodic surface structures on ZnO film by temporally shaped femtosecond laser scanning

Shaojun Wang, Lan Jiang, Weina Han, Wei Liu, Jie Hu, Suocheng Wang, and Yongfeng Lu
Opt. Lett. 45(8) 2411-2414 (2020)

Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation

Sandra Höhm, Marcel Herzlieb, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(1) 61-71 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.