Abstract

Laser-triggered electron emission from sharp metal tips has been demonstrated in recent years as a high brightness, ultrafast electron source. Its possible applications range from ultrafast electron microscopy to laser-based particle accelerators to electron interferometry. The ultrafast nature of the emission process allows for the sampling of an instantaneous radio frequency (RF) voltage that has been applied to a field emitter. For proof-of-concept, we use an RF signal derived from our laser’s repetition rate, mapping a 9.28 GHz signal in 22.4 fs steps with 28 mv accuracy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond phase control in high-field terahertz-driven ultrafast electron sources

Dongfang Zhang, Arya Fallahi, Michael Hemmer, Hong Ye, Moein Fakhari, Yi Hua, Huseyin Cankaya, Anne-Laure Calendron, Luis E. Zapata, Nicholas H. Matlis, and Franz X. Kärtner
Optica 6(7) 872-877 (2019)

Femtosecond pulse imaging: ultrafast optical oscilloscope

P. C. Sun, Y. T. Mazurenko, and Y. Fainman
J. Opt. Soc. Am. A 14(5) 1159-1170 (1997)

Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification

Yuhua Duan, Liao Chen, Haidong Zhou, Xi Zhou, Chi Zhang, and Xinliang Zhang
Opt. Express 25(7) 7520-7529 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz and M. I. Stockman, Nat. Photonics 8, 205 (2014).
    [Crossref]
  2. S. Kono, M. Tani, and K. Sakai, Appl. Phys. Lett. 79, 898 (2001).
    [Crossref]
  3. P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, Nat. Photonics 1, 577 (2007).
    [Crossref]
  4. G. Ghione, Semiconductor Devices for High-Speed Optoelectronics, 1st ed. (Cambridge University, 2009).
  5. K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
    [Crossref]
  6. P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
    [Crossref]
  7. L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
    [Crossref]
  8. M. Krüger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
    [Crossref]
  9. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012).
    [Crossref]
  10. B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
    [Crossref]
  11. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).
    [Crossref]
  12. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006).
    [Crossref]
  13. M. Schenk, M. Krüger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010).
    [Crossref]
  14. M. Yavor, Optics of Charged Particle Analyzers (Academic, 2009).
  15. M. Terauchi, M. Tanaka, K. Tsuno, and M. Ishida, J. Microsc. 194, 203 (1999).
  16. H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
    [Crossref]
  17. A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, New J. Phys. 14, 073055 (2012).
    [Crossref]
  18. A. Williamson, IEEE Trans. Microwave Theor. Tech. 24, 182 (1976).
    [Crossref]

2014 (2)

F. Krausz and M. I. Stockman, Nat. Photonics 8, 205 (2014).
[Crossref]

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
[Crossref]

2013 (2)

K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
[Crossref]

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

2012 (2)

A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, New J. Phys. 14, 073055 (2012).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012).
[Crossref]

2011 (2)

M. Krüger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[Crossref]

H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
[Crossref]

2010 (1)

M. Schenk, M. Krüger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

2009 (1)

P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
[Crossref]

2007 (1)

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, Nat. Photonics 1, 577 (2007).
[Crossref]

2006 (2)

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006).
[Crossref]

2001 (1)

S. Kono, M. Tani, and K. Sakai, Appl. Phys. Lett. 79, 898 (2001).
[Crossref]

1999 (1)

M. Terauchi, M. Tanaka, K. Tsuno, and M. Ishida, J. Microsc. 194, 203 (1999).

1976 (1)

A. Williamson, IEEE Trans. Microwave Theor. Tech. 24, 182 (1976).
[Crossref]

Aghajani-Talesh, A.

P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
[Crossref]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

Apolonski, A.

A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, New J. Phys. 14, 073055 (2012).
[Crossref]

Baum, P.

A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, New J. Phys. 14, 073055 (2012).
[Crossref]

Cerullo, G.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Corkum, P. B.

K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
[Crossref]

Echternkamp, K. E.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
[Crossref]

Farinello, P.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Foreman, S. M.

P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
[Crossref]

Gaal, P.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, Nat. Photonics 1, 577 (2007).
[Crossref]

Ghione, G.

G. Ghione, Semiconductor Devices for High-Speed Optoelectronics, 1st ed. (Cambridge University, 2009).

Gliserin, A.

A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, New J. Phys. 14, 073055 (2012).
[Crossref]

Greber, T.

H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
[Crossref]

Groß, P.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Gulde, M.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012).
[Crossref]

Hafner, C.

H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
[Crossref]

Hengsberger, M.

H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
[Crossref]

Herink, G.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012).
[Crossref]

Hommelhoff, P.

M. Krüger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[Crossref]

M. Schenk, M. Krüger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
[Crossref]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006).
[Crossref]

Ishida, M.

M. Terauchi, M. Tanaka, K. Tsuno, and M. Ishida, J. Microsc. 194, 203 (1999).

Kasevich, M. A.

P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
[Crossref]

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006).
[Crossref]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

Kealhofer, C.

P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
[Crossref]

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006).
[Crossref]

Kim, K. T.

K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
[Crossref]

Klöckner, M.

H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
[Crossref]

Kono, S.

S. Kono, M. Tani, and K. Sakai, Appl. Phys. Lett. 79, 898 (2001).
[Crossref]

Krausz, F.

F. Krausz and M. I. Stockman, Nat. Photonics 8, 205 (2014).
[Crossref]

A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, New J. Phys. 14, 073055 (2012).
[Crossref]

Krüger, M.

M. Krüger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[Crossref]

M. Schenk, M. Krüger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

Légaré, F.

K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
[Crossref]

Leuenberger, D.

H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
[Crossref]

Lienau, C.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Manzoni, C.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Osterwalder, J.

H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
[Crossref]

Park, D. J.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Piglosiewicz, B.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Raschke, M. B.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, Nat. Photonics 1, 577 (2007).
[Crossref]

Reimann, K.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, Nat. Photonics 1, 577 (2007).
[Crossref]

Ropers, C.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012).
[Crossref]

Sakai, K.

S. Kono, M. Tani, and K. Sakai, Appl. Phys. Lett. 79, 898 (2001).
[Crossref]

Schenk, M.

M. Krüger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[Crossref]

M. Schenk, M. Krüger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

Schmidt, B. E.

K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
[Crossref]

Schmidt, S.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Shiner, A. D.

K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
[Crossref]

Solli, D. R.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012).
[Crossref]

Sortais, Y.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

Sortais, Y. R.

P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
[Crossref]

Stockman, M. I.

F. Krausz and M. I. Stockman, Nat. Photonics 8, 205 (2014).
[Crossref]

Tanaka, M.

M. Terauchi, M. Tanaka, K. Tsuno, and M. Ishida, J. Microsc. 194, 203 (1999).

Tani, M.

S. Kono, M. Tani, and K. Sakai, Appl. Phys. Lett. 79, 898 (2001).
[Crossref]

Terauchi, M.

M. Terauchi, M. Tanaka, K. Tsuno, and M. Ishida, J. Microsc. 194, 203 (1999).

Tsuno, K.

M. Terauchi, M. Tanaka, K. Tsuno, and M. Ishida, J. Microsc. 194, 203 (1999).

Villeneuve, D. M.

K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
[Crossref]

Vogelsang, J.

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Williamson, A.

A. Williamson, IEEE Trans. Microwave Theor. Tech. 24, 182 (1976).
[Crossref]

Wimmer, L.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
[Crossref]

Woerner, M.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, Nat. Photonics 1, 577 (2007).
[Crossref]

Yalunin, S. V.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
[Crossref]

Yanagisawa, H.

H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
[Crossref]

Yavor, M.

M. Yavor, Optics of Charged Particle Analyzers (Academic, 2009).

Zhang, C.

K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
[Crossref]

Appl. Phys. Lett. (1)

S. Kono, M. Tani, and K. Sakai, Appl. Phys. Lett. 79, 898 (2001).
[Crossref]

IEEE Trans. Microwave Theor. Tech. (1)

A. Williamson, IEEE Trans. Microwave Theor. Tech. 24, 182 (1976).
[Crossref]

J. Microsc. (1)

M. Terauchi, M. Tanaka, K. Tsuno, and M. Ishida, J. Microsc. 194, 203 (1999).

Nat. Photonics (4)

F. Krausz and M. I. Stockman, Nat. Photonics 8, 205 (2014).
[Crossref]

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, Nat. Photonics 1, 577 (2007).
[Crossref]

K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, Nat. Photonics 7, 958 (2013).
[Crossref]

B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2013).
[Crossref]

Nat. Phys. (1)

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
[Crossref]

Nature (2)

M. Krüger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012).
[Crossref]

New J. Phys. (1)

A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, New J. Phys. 14, 073055 (2012).
[Crossref]

Phys. Rev. Lett. (4)

H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klöckner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
[Crossref]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006).
[Crossref]

M. Schenk, M. Krüger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

Ultramicroscopy (1)

P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
[Crossref]

Other (2)

G. Ghione, Semiconductor Devices for High-Speed Optoelectronics, 1st ed. (Cambridge University, 2009).

M. Yavor, Optics of Charged Particle Analyzers (Academic, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (Top) Experimental setup. (a) Laser and dispersion compensation. (b) Michelson interferometer for generating multiple pulses (one arm is blocked for “oscilloscope” traces). (c) RF electronics: harmonic of laser f LO = n f rep is mixed with DDS signal (for phase control) in a single-sideband mixer where the upper sideband is amplified and optionally put through an NLTL. For sine wave measurements, f LO = 61 f rep 9.13 GHz , and for NLTL measurements, f LO = 4 f rep 600 MHz . The signal is switched to the RF spectrum analyzer (RFSA) when no RF is applied to the tip. (d) Emitter (tip), electron optics, and energy analyzer. (e) Beam diagnostics. (Bottom) Sampling method: the phase of RF is adjusted and the energy of the emitted electrons is measured. In this way, the voltage versus time information is obtained.
Fig. 2.
Fig. 2. Top plot shows the measured oscilloscope trace for a 9.28 GHz sine wave ( 62 f rep ) applied to the tip. The data set (squares) is plotted again with a 360° phase offset (crosses). The plot on the lower left is a zoomed-in portion of the oscilloscope trace, with phase steps of 0.075° (22.4 fs). The plot on the lower right shows the Fourier spectrum (FT) computed from the oscilloscope trace alongside the corresponding RF amplitudes applied to the tip (at f LO , f LO + f rep , f LO + 2 f rep , and f LO 3 f rep ). The RF spectrum was measured before the bias tee, and then corrected for the frequency response of the tip and bias tee, which was independently measured.
Fig. 3.
Fig. 3. NLTL oscilloscope trace representing an “arbitrary” waveform (i.e., a signal with complicated Fourier spectrum). The data set (crosses) is plotted again with a 360° offset (squares) to demonstrate stability.
Fig. 4.
Fig. 4. Spectra with a single or double pulse train incident on the tip near a zero-crossing of the RF. The plots on the left are for the positive slope (applied voltage increases with time), and those on right are for the negative slope. (Top) Spectra for the double pulse train. (Middle) Spectra with the first pulse blocked. The spectra are fit with asymmetric Gaussians (for the main peaks, which are represented by the solid red and dotted blue lines), and the background from the secondary and scattered electrons is fitted with a Gaussian (gray dashed line). The total fits are shown as solid black lines through the data points. (Bottom) The plots show the red curves from the top and middle plots, normalized to their peak values (the solid red line represents the double pulse spectra and black dashed–dotted line represents the single pulse spectra). The difference in position between the two fits corresponds to 110 fs for the positive slope and 10 fs for the negative slope.

Metrics