Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-dimensional simulation of optical wave propagation through atmospheric turbulence

Not Accessible

Your library or personal account may give you access

Abstract

A methodology for the two-dimensional simulation of optical wave propagation through atmospheric turbulence is presented. The derivations of common statistical field moments in two dimensions, required for performing and validating simulations, are presented and compared with their traditional three-dimensional counterparts. Wave optics simulations are performed to validate the two-dimensional moments and to demonstrate the utility of performing two-dimensional wave optics simulations so that the results may be scaled to those of computationally prohibitive 3D scenarios. Discussions of the benefits and limitations of two-dimensional atmospheric turbulence simulations are provided throughout.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Mean-square angle-of-arrival difference between two counter-propagating spherical waves in the presence of atmospheric turbulence

Chunyi Chen, Huamin Yang, Shoufeng Tong, and Yan Lou
Opt. Express 23(19) 24657-24668 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved