Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Strong Raman-induced noninstantaneous soliton interactions in gas-filled photonic crystal fibers

Not Accessible

Your library or personal account may give you access

Abstract

We have developed an analytical model based on the perturbation theory to study the optical propagation of two successive solitons in hollow-core photonic crystal fibers filled with Raman-active gases. Based on the time delay between the two solitons, we have found that the trailing soliton dynamics can experience unusual nonlinear phenomena, such as spectral and temporal soliton oscillations and transport toward the leading soliton. The overall dynamics can lead to a spatiotemporal modulation of the refractive index with a uniform temporal period and a uniform or chirped spatial period.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Raman-induced temporal condensed matter physics in gas-filled photonic crystal fibers

Mohammed F. Saleh, Andrea Armaroli, Truong X. Tran, Andrea Marini, Federico Belli, Amir Abdolvand, and Fabio Biancalana
Opt. Express 23(9) 11879-11886 (2015)

Tunable frequency-up/down conversion in gas-filled hollow-core photonic crystal fibers

Mohammed F. Saleh and Fabio Biancalana
Opt. Lett. 40(18) 4218-4221 (2015)

Ionization-induced adiabatic soliton compression in gas-filled hollow-core photonic crystal fibers

Z. Y. Huang, Y. F. Chen, F. Yu, D. K. Wu, Y. Zhao, D. Wang, and Y. X. Leng
Opt. Lett. 44(22) 5562-5565 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.